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 Abstract – In this study, we proposed a system for measuring 

hand posture and fingertip force for training unskilled workers 

who sew with sewing machines. Furthermore, we classified sewing 

behaviors by constructing deep learning models using time-series 

color image data, hand posture, and fingertip force as inputs. Our 

experiments demonstrated that the classification model based on 

color images is the highest accuracy. Meanwhile, using the 

fingertip force-based model can not only classify sewing actions 

but can also extract the operator's motion data in detail. 

 Index Terms – sewing operation, fingertip force sensing, action 

classification. 

I.  INTRODUCTION 

As technology advances, manufacturing operations are 
becoming increasingly automated. Conversely, there are still 
many situations that are difficult to automate and require human 
skills. An example of such operation is the sewing operation of 
cloth and other materials. In the manufacturing of fabric 
products, flexible objects are manipulated using various 
fingering techniques. It can be imagined that the judgment of 
action is based not only on visual information but also on forces 
applied to the fingertips. In other words, to convert a person's 
work ability into data and effectively communicate it to others, 
it is necessary to perform multimodal measurements, analyze 
the results, and present them in an appropriate format. 

We are interested in developing a training system that can 
help unskilled workers efficiently acquire the ability to operate 
flexible objects such as those used in sewing. The purpose of 
this study is to establish a motion classification method, which 
is an important element for achieving this goal. Motion 
classification here means that when time-series data of a 
worker's observations are input at regular intervals, a class 
number can be obtained to indicate what the worker is currently 
doing. In other words, it is possible to accurately determine 
what action was being taken at what time. In the future, we will 
develop a training system for unskilled workers based on this 
method. We hope to contribute to alleviating the shortage of 
workers in this industry. 

Studies have been conducted on measuring and analyzing 
human behavior for skill extraction. However, most of these 
studies have focused on sports or manipulation tasks for rigid 
body objects [1,2]. Conversely, we target the sewing task. In 
this case, operators are required to sew together flexible fabrics 
using a sewing machine. Therefore, a worker's body 
movements are fundamentally small, and the work proceeds 
through fine movements of the fingers. It is a new challenge to 
perform appropriate motion classification under these 
conditions. 

In addition, sewing work entails the know-how to properly 
handle a deformable object such as cloth. It is desirable to 
present data that enable non-skilled workers to acquire such 
know-how when they receive training. In this study, we do not 
go so far as to show the know-how, but we target the 
measurement of hand posture and the force applied to the 
fingertips. This approach allows for the presentation of data on 
subjects that cannot be expressed by simply presenting the 
results of motion classification. 

The contributions of this study can be summarized as 
follows. 

 We propose a method for classifying worker behavior 
using time-series data measuring sewing operations as 
input.  

 The data used as cues for classification are image 
sequence, hand posture, and fingertip force. We 
developed a classifier that considers each 
characteristic.  

 Data on actual sewing operations were collected to 
verify the classification accuracy of the proposed 
method. We also visualized some results to confirm 
the possibility of using the data. 

This paper is organized as follows. The next section 
describes related work. Section III describes the problem setting 
and our approach. Section IV details the classification method 
based on image sequences, and Section V details the 
classification method based on hand posture and force data. 
Section VI reports the actual data measurement and 
classification results, and Section VII summarizes the study. 

II.  RELATED WORK 

Action classification has been attempted for tasks 
performed at hand, such as factory assembling work. Malc et 
al. [3] classified the type of work in an assembly task with 
screws and bolts using image-based part recognition and an 
inertial measurement unit (IMU) sensor attached to a human 
wrist. Chengjun et al. [4] recognized assembly tasks with 
repetitive motions based on image-based tool recognition and 
human skeleton estimation. These studies recognized actions by 
observing both the human and the manipulated object but 
assumed that the shape of the manipulated object is not 
deformed. However, in our study, it is necessary to be able to 
recognize actions even if the manipulated object is deformed 
because it is assumed that flexible objects such as cloth are 
being handled.  



  

 

  

 

Azadi et al. [5] used an IMU sensor attached to a worker's 
wrist to detect frequent small repetitive movements and cluster 
them, such as screwdrivers and wrenches. Riedel et al. [6] 
recognized assembly tasks by recognizing the shape of the 
worker's hands using a camera and classifying them into five 
predefined basic movements. However, these studies focused 
only on the operator's movements and did not consider the force 
applied to the hands and fingertips. However, in flexible object 
manipulation, it is necessary to measure the force applied to the 
fingertips because the shape of the flexible object changes 
significantly depending on the magnitude of the applied force.  

Conversely, there have been attempts to classify motions by 
considering the force applied by the worker. Mo et al. [7] 
measured the hand posture and fingertip force of a worker 
performing a sewing operation using a minimally invasive 
measurement method that does not impair the operator's finger 
sensation. The effectiveness of their method was verified in a 
simulated sewing operation by segmenting a series of 
operations. Fermüller et al. [8] demonstrated that capturing 
images of a worker's hand and simultaneously measuring the 
force applied to the fingers improves the accuracy of action 
prediction. Becker et al. [9] showed that a band composed of 
myoelectric sensors attached to a person's arm can estimate the 
finger movement and the force applied to the finger and 
demonstrated various applications, mainly tablet terminal 
operations. In this way, the estimation of fingertip force has 
shown the potential to benefit work process recognition and 
subsequent application, even if the rigidity of the manipulated 
object is low. However, because these studies did not focus on 
actual flexible object manipulation tasks, they did not show the 
actual operator's movements and force applied to the fingertips.  

III.  ISSUES AND APPROACH 

A. Issues in Action Primitive Classification 
This study focuses on sewing operations. In the sewing task, 

fabric parts are sent to a sewing machine and sewn with threads. 
We aim to record this workflow as appropriate data to classify 
the primitive actions. Furthermore, it is desirable to measure the 
worker's actions and estimate the status of each action. One of 
the most promising clues for this purpose is the movement of 
the fingers. In particular, the tips of the fingers have an 
important role in the operation of a sewing machine. It would 
be good to know in what posture the fingers are positioned to 
realize operations with the fingertips. It would also be useful to 
know in which direction the force is applied to the fingertips 
during operation. The issues are what kind of data should be 
used for classification, and how to measure and utilize finger 
posture and fingertip force. 

Moreover, one way to determine finger posture is to use a 
wearable measurement device such as a data glove. However, 
sewing requires fine finger movements; thus, wearing data 
gloves may interfere with the original movements of the 
fingers. Furthermore, the measurement of the force applied to 
the fingertips must be devised. Sewing work often relies on the 
sensation of the fingertips touching the fabric. Therefore, it is 
desirable to adopt a method for measuring the applied force 
without losing the fingertip sensation. 

B. Our Approach 

Based on the discussion in the previous subsection, the 

measurement approach for this study is as follows. 

1. An RGBD camera is placed in a position which both the 
operator's hand and the sewing machine are visible, and 
color and depth images are acquired in time series. 
However, it is unavoidable that a part of the hand may be 
hidden depending on the work situation.  

2. The hand posture is estimated using RGB images, and 
then, the results are converted to three-dimensional (3D) 
information using depth images.  

3. For the force applied to the fingertips, we adopt the 
method of attaching strain sensors to the fingernails [13]. 
This method enables the measurement of the force applied 
by the fingertip without losing the sensation of the finger 
pad.  

 Next, we describe the action primitive classification 

approach. The data obtained as described above are used as 

input to classify the action elements. Classes are manually 

defined on the basis of features of the fingertips and hand 

movements. The classifier is constructed so that the current 

action class is output when time-series data are input at regular 

intervals.  

 The input data for the classifier are a sequence of color 

images, hand posture, and fingertip forces. The sequence of 

color images records not only the operator's movements but 

also the operation of the sewing machine and fabric parts. The 

image sequence is also expected to provide an appropriate 

output when there are frames for which the hand posture cannot 

be estimated or the quality of the force data is unsuitable for 

action classification. Conversely, hand posture and fingertip 

forces are useful for representing the quality of the task in 

detail. Thus, they can be used for classification, or to visualize 

the skill of the operator appropriately. We discuss the classifiers 

and visualization of each data, believing that utilizing the 

advantages of each data will lead to the construction of a better 

training system.  

IV.  IMAGE-BASED CLASSIFICATION 

A. Class Definition 
In sewing operations using general household sewing 

machines, there are multiple actions even when sewing a single 
piece of cloth. In such a case, it is desirable to be able to classify 
which process the worker is in and what the worker is operating 
at a certain time. Therefore, in this study, we define seven kinds 
of action primitive for sewing work (Fig. 1). 

1. Prepare fabric parts to be sewn and place them on the 

sewing machine, 

2. Lift/drop the presser foot, 

3. Send fabric parts to the sewing machine for sewing, 

4. Rotate the cloth parts with the needle stuck in them, 

5. Make backstitching, 

6. Cut yarn tails, 

7. Press the sewing start/stop button.  

 



  

 

  

 

B. Classification Method 

Figure 2 shows the structure of the image-based 

classification model used in this study. The proposed 

classification model is a deep learning model that uses time-

series images as input. The input image sequence consists of 

multiple images taken within a certain time span, and the order 

in which the images were taken is maintained.  

First, a convolution operation is applied three times to each 

image in the input image sequence in a convolutional layer. 

Next, the image is compressed to 64 dimensions using a fully 

connected layer, and then input to a long short-term memory 

(LSTM) layer. Then, a fully connected layer is applied several 

times for classification. The output is seven-dimensional. Thus, 

after applying the convolutional and pooling layers, the LSTM 

layer is applied to extract spatial feature from each of the 

images and temporal feature from the image sequence. 

The input to the classification model is a set of images 

compressed to 120 × 85 dimensions and consisting of an image 

sequence of approximately 0.2 s in length. The use of 

compressed images reduces the weight of the classification 

model and speeds up the inference. 

C. Classifier Training 

The sewing task setup in this study requires several tens of 

seconds per trial. However, the time required for each class 

varies. As a result, the amount of data in each class is 

imbalanced. Because training on imbalanced data significantly 

affects the performance of the classification model, this study 

uses undersampling to randomly remove data from the class 

with the largest amount of data. 

The cross entropy loss is used as the loss function for deep 

learning. The reason is that the cross entropy loss, which is 

implemented in PyTorch [10], the deep learning library we use, 

is synonymous with the inclusion of a softmax function and is 

therefore generally easy to use in classification problems. In 

addition, Adam [11] is used an optimization method. 

The training termination judgment is limited to 100 epochs, 

and the model with the lowest loss is adopted as the 

classification model. 

V.  MEASUREMENT AND CLASSIFICATION BASED ON HAND 

POSTURE AND FINGERTIP FORCES 

A. Hand Posture Estimation 

 To understand the motion of the hand in detail, we would like 

to know the 3D motion of the worker's hand. In particular, the 

positional relationship between the finger joints is important. 

Therefore, we estimate a skeletal model using RGB images 

obtained from a 3D range image sensor as an input. Although 

many methods have been proposed for estimating skeletal 

models, we adopt MediaPipe Hands [12] because of its fast-

processing speed, ease of execution, and high estimation 

accuracy. 21 landmarks are obtained per hand with MediaPipe 

Hands. In this study, we use the two-dimensional image 

coordinates of the estimated landmarks and the corresponding 

depth image as input and apply a pinhole model to obtain the 

3D positions of the landmarks as seen from the camera 

coordinate system. 

However, the handedness labels output by MediaPipe Hands 

are typically inaccurate. Therefore, we attached different 

augmented reality (AR) markers to the left and right wrists and 

identified the left and right hands by determining the distance 

between the AR markers and each wrist landmark output by 

MediaPipe Hands.  

B. Writhe Matrix  

There are individual differences in the size of a worker's 

hands. In addition, it is difficult to perfectly match conditions 

such as camera position and angle. Therefore, it is desirable to 

develop a hand posture expression method that minimizes the 

effects of individual differences and camera viewpoints. 

Vinayavekhin et al. [14] successfully reproduced the motion 

of a human finger in a simulator with a real robot hand that has 

a different joint structure by using the Writhe Matrix [15] to 

represent the posture relationship between a linear object and a 

human finger. The Writhe Matrix used in their study represents 

the relative relationship between linear objects and is 

unaffected by the camera viewpoint, making it an effective 

method for representing hand posture in our study. 

In this study, we represent hand posture using Writhe Matrix. 

First, two fingers ℎ� and ℎ� are selected, and the line from the 

wrist landmark to each fingertip landmark are, respectively, 

regarded as single lines. Next, by considering the �-th skeleton 

of the selected fingers as a line segment ℎ�  and the � -th 

RGB 
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Fig. 2 Image based classification model 

Class 1 Class 2 Class 3 Class 4 

Class 7 Class 6 Class 5 

Fig. 1 Class definition of sewing task 



  

 

  

 

skeleton of the selected fingers as line segment ℎ�, the Gauss 

linking integral (GLI) approximation ��� is calculated for both 

skeleton combinations. These GLI approximations ���  are 

arranged in a table to construct the Writhe Matrix for fingers ℎ� 

and ℎ�. The resulting Writhe Matrix is a 4 × 4 matrix. In the 

same way, Writhe Matrices are created for other finger 

combinations.  

The constructed Writhe Matrices can be arranged in the depth 

direction and handled as a multi-channel image. In this study, 

however, eight Writhe Matrices constructed by combing the left 

and right thumb, index fingers, and middle fingers are aligned 

vertically and horizontally. Then, the relationships between the 

Writhe Matrices are extracted using a convolutional neural 

network (CNN). Furthermore, by repeatedly arranging the same 

Writhe Matrices, as depicted in Fig. 3, distant Writhe Matrices, 

such as L1 and LR4 in Fig. 3, are placed close to each other and 

fit into an 8 × 8 kernel. 

C. Fingertip Force Estimation 

 It is necessary to estimate the force applied to the fingertips 

without losing the operator's finger sensation. To achieve this, 

we use nail-attached fingertip force sensors developed by 

Yamazaki et al [13]. This sensor measures the strain of a 

fingernail by attaching two strain gauges to it and estimates the 

force applied to the fingertip. 

 A low-pass filter is applied to the obtained strains to pass 

only frequencies below 25 Hz. Then, the transformation 

parameters obtained from the calibration are used to estimate 

the fingertip force. The method of obtaining the transformation 

parameters in the calibration is as follows. First, a finger with a 

nail-attached contact force sensor is pressed down vertically 

several times on a three-axis tactile sensor placed on a 

horizontal board. There is a logarithmic function relationship 

between the amount of strain 	 and the fingertip force 
 [13]. 

As a result, � and � in the following equation are determined 

using the least-squares method, 

	 = � log 
 + �. �1� 

From then on, the experimentally measured strains are 

converted to fingertip forces using � and �.  

D. Classification Method 

Figure 4 depicts the structure of the hand posture and a 

fingertip force-based classification model. This model uses 

time-series data of hand posture and estimated force as inputs.  
First, we describe the hand posture module shown in Fig. 4. The 

16 × 32 dimensional matrices constructed in Section V-B are 

input to a convolutional layer. Each matrix is reduced to 64 

dimensions by fully connected layers. After that, the matrices 

are input to an LSTM layer to extract time-series information. 

The output of the hand posture module is 32 dimensions. 

 Next, the fingertip force module shown in Fig. 4 is described. 

The fingertip forces estimated from the amount of nail strain are 

input for some time. Then, an LSTM layer and fully connected 

layers are applied in order. The output of the fingertip force 

module has 32 dimensions. 

 Finally, the hand posture and fingertip force module are 

combined and passed through several fully connected layers to 

create a classifier. The input has 64 dimensions, and the output 

has seven dimensions. 

VI.  EXPERIMENTS 

A. Sewing Tasks and Measurement Settings 

 To verify the effectiveness of the proposed method, we 

establish a sewing task using a household sewing machine. In 

this task, two rectangular fabric parts are stacked on top of each 

other and sewn on three sides. Figure 5 shows the sewing 

procedure. 

First, two pieces of fabrics were stacked, as depicted in Fig. 

5 (a). Next, the pair of fabrics was sewn along the dashed lines 

(Fig. 5 (b)) and were turned (Fig. 5 (c)). These processes were 

repeated twice. After the other side was sewn, a backstitch was 

made (Fig. 5 (d)), and the threads were cleaned up at the end. 

Next, the measurement environment for image-based 

classification is described. The image sensor is placed on the 

left side of the operator so that the various buttons, sewing 
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Fig. 4 Classification model of hands posture and 

fingertip force 
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needles, fabric parts, and the operator's hand can be seen.  It is 

unavoidable that the presser foot lever is not shown in the 

image. Figure 6 (a) depicts the image obtained from the placed 

image sensor. The image sensor is a Logitech C615n, which 

operates at 30 fps to acquire color images.  

 The measurement environment for classification based on 

hand posture and fingertip force is described. First, the worker's 

hand posture was acquired using Azure Kinect, a 3D range 

image sensor installed at approximately 0.2 m above the 

worker's head at an angle of −60° . This arrangement was 

designed to measure the hands without interfering with the 

operator's work. The 3D range image sensor was used to obtain 

pairs of color images and depth images at a frame rate of 10 fps. 

Figure 6 (b) depicts the color image obtained from the placed 

3D range image sensor. The nail-attached fingertip force 

sensors were attached to the middle and index fingers and 

thumb of the right hand and the index finger of the left hand. 

The strain gauge used was KFGS-3-120-C1-27, manufactured 

by Kyowa Electric Co., Ltd. The NR-ST04 strain measurement 

unit manufactured by KEYENCE Co., Ltd., was used as data 

logger for the strain gauges, and measurements were performed 

at 1000 Hz. The estimated fingertip forces were taken from 0.5-

s time-series data at regular intervals, and 64 values were 

considered one sequence of data.  

B. Data Collection and Learning 

To evaluate the effectiveness of the classification method 

based on images, we measured 20 sewing tasks, from three 

subjects (male, 20's), each of whom completed 20 trials. 

However, we excluded 30 trials in which the intended sewing 

task could not be completed because of procedural errors or 

equipment malfunctions. As a result, the number of usable 

training data points was 30 trials, which were converted to 

17,689 sequence data points. In addition, we measured one 

sewing task from each subject on a different day as test data. 

To investigate a classification method based on hand posture 

and fingertip force, we measured 120 sewing tasks from four 

subjects (male, 20's), each of whom completed 30 trials. 

However, 29 trials were excluded in which the intended sewing 

task could not be completed because of procedural errors. In 

addition, two trials for each subject were removed as test data 

for the final evaluation. Therefore, the total usable training data 

points was 83 trials. If either the hand posture or strain gauge 

output was missing for more than half of the trials in a sequence, 

it was excluded from the dataset. As a result, the number of 

available training data pints in terms of sequence data was 

136,538. 

Next, we describe the learning method for the classification 

method based on hand posture and fingertip force. In 

constructing the training and test data, the sequence data were 

cut out according to the number of fingertip force data points 

with the highest acquisition frequency. This is to assume that 

the latest data are always input when the classification model is 

used in actual factories. 

C. Classification Results 

 Table I shows the classification results for each model when 

the test data were input. For methods other than the image-

based model, cross-validation was performed by dividing the 

training data into five parts, and the average of the evaluation 

values is shown. According to the results, the image-based 

method had an F1-score of 94%, indicating high performance. 

The classification method based on hand posture and fingertip 

force had an F1-score of 68.7%. The hand posture-based model 

had the lowest F1-score at 38.9%. Further investigation is 

required to determine whether this is due to measurement errors 

caused by occlusion. 

In the fingertip force module, the confusion between class 2 

(lift/drop presser foot) and class 7 (press a button) is noticeable. 

This may be because both tasks were similar in that a strong 

force was applied to the fingertips of the thumb. However, 

Table I Classification result 

  recall precision f1 score 

image based 0.940 0.940 0.940 

posture based 0.432 0.382 0.389 

force based 0.628 0.641 0.624 

concatenate 0.665 0.726 0.687 

 

Fig. 6 Camera perspective of each method 

(a) (b) 

(a) (b) 

(c) (d) 

Fig. 5 Sewing task procedure 



  

 

  

 

according to the confusion matrix of the combined model 

shown in Table III, the confusion between class 2 and 7, which 

had low classification accuracy in the fingertip force module 

alone (Table II), has been improved. 

D. Action Data Analysis 

 This section discusses the movement of the fingers and the 

force applied to the fingertips during the sewing task. Figure 7 

depicts an example of the strain gauge output obtained from 

sensors attached to each finger during a sewing task. For 

example, at around 2,000 ms, the strain of the right thumb, right 

index finger, and left index finger changes in the area where the 

fabric parts were stacked. This is because the positions of the 

clothes were adjusted so that the fingertips were pressed 

together, as depicted in Fig. 8 (a).  

During the first manipulation presser foot (approximately 

6,000 ms), the strain output of the right thumb changed 

significantly, and the strain of the left index finger also changed 

simultaneously. That is because the right thumb was used to 

drop the presser foot, the left hand was pressed down on the 

cloth at the same time as the right thumb, and the left index 

finger was also subjected to force. Conversely, there were two 

peaks of the right thumb in the interval of the second operation 

(approximately 20,000 ms) and the third operation 

(approximately 33,000 ms). This is a scene in which the lifting 

and dropping operations of the presser foot were performed 

consecutively. In this case, the first strain change of the right 

thumb and the second strain change of the left index finger 

occurred simultaneously. This means that the lifting operation 

and the cloth rotation operation started at almost the same time 

(Fig. 8 (b)). 

In the sewing section, the strain outputs of the right index 

finger, right middle finger, and left index finger were constantly 

changing. This is because the index and middle fingers of both 

Fig. 7 Measurement of sewing work 

Backstitching 

Stop sewing 

Sewing 

Start sewing 

Sewing 

Start sewing 

Presser foot Sewing 

Stop sewing 

Presser foot Presser foot 

Start sewing 

Stop sewing Parts positioning 

Presser foot 

Cut yarn tails 

Table III Confusion matrix of concatenate model 

 class 1 class 2 class 3 class 4 class 5 class 6 class 7 

class 1 7333 196 0 0 0 0 0 

class 2 329 6495 57 1230 247 442 571 

class 3 343 1478 27017 468 182 477 1980 

class 4 0 868 36 1166 8 0 182 

class 5 0 143 139 38 3693 479 536 

class 6 0 109 233 63 325 2213 19 

class 7 298 811 887 422 1688 107 7337 

 

Table II Confusion matrix of fingertip force model 

 class 1 class 2 class 3 class 4 class 5 class 6 class 7 

class 1 6895 68 0 0 0 0 0 

class 2 701 5409 368 714 485 377 1281 

class 3 246 2235 26402 498 152 0 2417 

class 4 0 954 36 745 21 0 524 

class 5 0 272 41 16 3667 358 695 

class 6 0 261 105 58 467 2568 85 

class 7 349 1365 1750 218 401 17 7452 

 



  

 

  

 

hands were primarily used to press the cloth onto the sewing 

table, and each finger repeatedly contacted the cloth. 

Conversely, the output of the right thumb barely changed. The 

image shown in Fig. 8 (c) also shows that the right thumb did 

not manipulate the cloth or the sewing machine. 

In the cut yarn tails section, as depicted in Fig. 8 (d), the left 

hand held the fabric, and the right hand held the threads; then, 

the cutter on the left side of the sewing machine was used to cut 

the threads. Two peaks of the left index finger appear at 50,000 

ms in Fig. 7, but this is because the thread was not cut in the 

first cutting operation and the cutting operation was redone.  

VII.  CONCLUSIONS 

In this study, we proposed a system for measuring hand 
posture and fingertip force for training unskilled workers who 
sew with sewing machines. The system measures hand posture 
and fingertip force without interfering with the operator's 
fingertip sensation. Furthermore, we classified sewing 
behaviors on the basis of color image sequences, hand posture, 
and fingertip force. Finally, the measured fingertip force data 
were used to visualize the sewing operator's skills. The 
classification accuracy of the method using time-series images 
as input is high; thus, it is suitable to use in work process 
recognition. Conversely, detailed timing of applying force and 
interaction with other fingers were confirmed for the fingertip 
force. Therefore, it is expected to extract skilled techniques by 
comparing the work measurement results of skilled and 
unskilled workers. 

In the future, we will construct a teaching system for 
unskilled sewing workers based on the measurement and 
classification system proposed in this study. Furthermore, we 
will extract sewing skills by analyzing the visualized sewing 
skills.  
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