
  

 

Abstract—This paper describes a motion generation method 
for a robot performing door-opening tasks. Unlike prior studies 
that divided the door-opening task into subproblems, we 
propose a single computation approach to obtain robot motions. 
To achieve this, we construct a robot model utilizing differential 
algebraic equations (DAE) derived from the differential 
kinematics of mobile manipulators. Additionally, we present the 
formulation of a nonlinear optimization problem, including the 
definition of constraints for robot’s via points, collision 
avoidance, and others. We then present our experimental 
findings conducted in both simulated and real environments, 
involving various types of hinged doors. We confirmed that the 
proposed method can generate suitable motions for door 
opening, both for the robot itself and for others. 

I. INTRODUCTION 

Recently, robots have been widely used throughout society, 
spanning from factory to daily life. A key societal expectation 
for robots is to replace the object manipulation tasks that are 
manually performed. However, these tasks exhibit varying 
levels of complexity. Some necessitate a combination of 
multiple actions rather than a singular, straightforward task.  
Moreover, there are tasks that meet specific requirements, 
such as execution time and via postures. 

We focus on door-opening tasks as a representative object 
manipulation task that can be substituted by a robot. Door 
opening is an intriguing research problem at the control level 
due to the closed-loop structure formed between the robot and 
the manipulated object, even when considering solely moving 
the door. Conversely, addressing what actions the robot 
should undertake post-door opening (e.g., move through the 
door and go out into the hallway) requires simultaneous 
consideration of the robot’s hand trajectory, collision 
avoidance with the door, and the robot’s standing position 
while manipulating the door, thereby presenting a formidable 
motion planning challenge. Therefore, door opening has been 
studied from the past to the present [1-7]. 

The purpose of this study is to establish a method for the 
latter of the above. Specifically, we consider the door-opening 
task as a problem of generating a sequence of movements 
involving the robot’s entire body while satisfying some 
required constraints. We propose a method to achieve this 
problem through mathematical optimization. In this study, we 
assume the robot performed tasks is a mobile manipulator, 
hereafter simply termed as "robots". 

Various methods have been proposed for acquiring motions 
to execute object manipulation tasks. Reinforcement learning 
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methods [8][9] enable the acquisition of suitable motions, 
even for complex tasks involving multiple actions, through 
learning based on action data from task execution. 
Additionally, mathematical optimization methods [10][11] 
can compute a motion that aims to minimize the amount of 
motion and make it smooth within predefined constraints. 
However, when applying these methods to door-opening 
tasks such as the one in this study, segmentation of the robot’s 
motion into distinct simple actions is a prerequisite, requiring 
separate planning for each. For instance, if a robot’s standing 
position at an intermediate point needs to be constrained, the 
motion must be separated there, and then the actions before 
and after that point must be generated separately. 

However, mathematical optimization methods have 
continued to develop, and recently methods have been 
proposed that are stable and computable under complex and 
specialized conditions [12][13]. In this study, we formulate 
robot models utilizing differential algebraic equations (DAE) 
and propose a method to achieve a unified motion for door 
opening. This approach considers both the geometric 
constraints of the robot and the constraints imposed at a 
certain timing during the motion.  

The contributions of this study are as follows: 

 We formulate motion generation for a door-opening 
task as a mathematical optimization problem and 
propose a method that computes the required robot 
motion in a single optimization calculation. 

 We define novel constraints to prevent collisions with 
the door and to regulate the robot’s motion 
parameters. Additionally, we demonstrate how our 
method can generate suitable motions, even if the 
door size or handle position changes. 

 To validate the efficacy of our proposed method, we 
conducted door opening experiments. In the 
experiments using an actual robot, we also discuss 
how to address robot positioning errors. 

The structure of this paper is as follows. Section II 
discusses related work. In Section III, we organize the 
problem framework and our approach. Section IV describes 
the formulation of the optimization problem. In Section V, we 
apply the problem formulated in the previous section to the 
door-opening task. Section VI describes the experimental 
method, Section VII presents the results, and Section VIII 
concludes this study. 

II. RELATED WORK 

A. Door Operation by Autonomous Robots 
As noted in the preceding section, door opening has been 

the subject of many studies. Nagatani et al. [1] achieved 
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successful door opening and passage through a door with an 
autonomous robot based on a task-oriented approach. Sasaki 
et al. [2] achieved door opening through a simple control law 
using passive joints with minimal viscous resistance. 
Nagahama et al. [3] proposed a real-time method to determine 
door type and manipulation trajectory by measuring the force 
exerted on the robot’s wrist. Mittal et al. [4] introduced a 
method for opening various doors in a kitchen using model 
predictive control in a linear optimization problem, which 
enables door opening to be accomplished in a dynamic 
environment with potential collisions. In these studies, door 
opening is achieved through flexible online motion 
modification. On the other hand, it is assumed that the robot’s 
motion rules are either given manually or learned in advance. 

Some studies have achieved a higher degree of autonomy in 
motion generation. Chitta et al. [5] achieved a door-opening 
task using graph search-based motion planning. There are also 
some studies that aim to acquire door-opening behavior 
through machine learning. Gu et al. [6] used asynchronous 
deep reinforcement learning to obtain door-opening motions 
with multiple robots of the same type and proposed a method 
to acquire the motions by integrating the training results into a 
single robot. Ito et al. [7] presented a method to learn a series 
of door-opening motions by dividing it into multiple actions 
(approaching the door, opening the door, and passing through 
the door) and integrating the generated models. In these 
studies, complex motions were automatically generated. 
However, the division into simple actions was determined 
manually, and the suitable motion when the door opening is 
considered as one complex action was not discussed. 

B. DAE-based Modeling on Robotics Motion Generation 
In our study, DAE is used for modeling robots. Similarly, 

there are studies that have applied DAE to the field of robotics. 
Costa-Castello et al. [14] employed DAE to model the motion 
of a constrained planar 2 DoFs robot system. Yang et al. [15] 
used DAE for the dynamic modeling of a multisegmented 
continuum robot. Wang et al. [16] adopted DAE to model the 
kinematics of a biped robot and tackled the dynamic 
optimization of the control system. 

As described above, modeling using DAE has the potential 
to be used in robotics. We posit that it is better to approach the 
door-opening task from a higher-order perspective than before 
and to be able to solve it without dividing it into subproblems 
as in the literature [10][11]. We consider DAE as a potent tool 
to realize this approach and elaborate on its appropriate 
utilization in this paper.  

III. PROBLEM SETTING AND APPROACH 

A.  Problem Setting and Issues 

In human living spaces, hinged doors of diverse 
dimensions are installed in furniture and room entryways. We 
aim to have robots proficiently open these doors. The 
requisite robot motion varies depending on its objective; 
therefore, we categorize this task into two types: (1) door 
opening for others and (2) door opening for itself. Based on 
the discussion so far, the proposed method is required to 
address the following two key challenges. 

1. It can be used for hinged doors of various dimensions. 
2. The same method can be used to generate motion for 

both above door-opening types. 

We explain item 2 in detail. As shown in the upper row of 
Fig. 1, type (1) is the case where the door is opened for human 
or other robots. In this case, the robot tasked with door 
opening is required to position so as not to impede the 
movement of others. This task can be realized through 
relatively simple motion because the robot can execute it if 
moving with the door’s movement. However, as shown in the 
lower row of Fig. 1, type (2) is necessary when the robot is 
required to move between rooms or retrieve items from 
shelves. In this case, it is desirable to come in the area where 
the door has opened so that the robot can easily perform the 
next action. If robots have sufficient range of motion same as 
humans, they can move into the opened area simultaneously 
with opening the door. In such cases, it is regarded as a 
single-action task. However, due to limitations in the robot’s 
degree of freedom and range of motion, there may be 
instances where the above behavior cannot be executed as a 
single action. In such cases, we should consider this task as 
composed of multiple actions, such as moving into the opened 
area after opening the door. Here, the authors argue that it is 
desirable to generate the motion in a single calculation rather 
than solving this motion generation problem individually for 
each action. This is because an action can end in a posture that 
is conducive to the next action, thereby enabling the 
generation of more efficient motions. 

B. Approach 
To address the two issues outlined in the preceding section, 

we explain our approach. First, for issue 1, we treat the 
door-opening task as a mathematical optimization problem. 
By incorporating door dimensions or relevant information as 
constraints in the optimization problem, motion generation 
can be executed for various doors. 

Regarding issue 2, we construct a robot model using DAE. 
In the case of type (2) mentioned in Section III-A, multiple 
actions such as “opening the door” and “moving to the 
opened area” are required. Generally, it is difficult to generate 
these multiple actions by conventional optimization-based 
methods [10-12]. This is because the robot model, 
represented by algebraic equations, solely considers discrete 
time at specific points. By employing DAE instead of 
algebraic equations, we can simultaneously account for 
previous robot actions and geometric constraints of the robot 
at discrete times. This approach allows for the generation of 
robot motion in a single optimization calculation, even for 
problems requiring complex motions. 

Figure 1. Variation of door opening according to work purpose. Upper 
row: open the door for others. Lower row: open the door for itself. 



 

IV. FORMULATION TO OPTIMIZATION PROBLEM 

A. Objective Function 
We define the objective function as Eq. (1): min න dt.௧ ࢞ࡽୃ࢞

଴  is a variable related to time. When the number of variables ࢞ (1)  
to be optimized is ݊, ࢞ = ,ଵݔ] ,ଶݔ … . , ୃ[௡ݔ  is a diagonal ࡽ .
matrix of size ݊ × ݊ with the weights of each variable as the 
diagonal component. The superscript denotes the matrix 
transpose. Since the elements of ࢞ may use variables with 
different systems of unit, we divide them by the maximum 
value of each variable for normalization, such that they can be 
evaluated equally. When performing optimization calculations, 
the objective function is discretized based on the discrete 
points described in the next section using the trapezoid rule. 

In this study, to obtain smooth motion, expressed using 
variables (ݔ୰, ,୰ݕ ߶୰)  denoting the position and angle of a 
mobile platform and variables (ߠଵ, ,ଶߠ … ,  ௜) denoting jointߠ
angles of a manipulator, we represent ࢞ to be optimized as 
follows: ࢞ = ൫̈ݔ୰, ,୰ݕ̈ ߶̈୰, ,ଵߠ̈ ,ଶߠ̈ … , .௜൯ୃߠ̈ (2) 

B. Formulation with DAE 
As detailed in Section III-B, to generate the robot motion 

in a single optimization calculation, the robot model, which is 
part of the constraint within the optimization problem, is 
represented using DAE. In this subsection, we explain the 
process of formulating the robot model represented by DAE. 

The general form of DAE is expressed as follows: ̇࢟)ܨ, ,࢟ (ݐ = 0. (3) 

DAE includes both differential and algebraic variables and can 
be considered an extension of ordinary differential equations. 
It is used in various fields to represent dynamic systems. 

To realize the form of Eq. (3), we consider the differential 
kinematics of Eq. (4):  ̇࢘ = ,̇ࢗ(ࢗ)ࡶ (4) 

where ࢘  is the robot hand position based on the mobile 
platform coordinates, and ࢗ is the joint angles. Both variables 
are variable vectors related to time ࡶ .ݐ is the Jacobi matrix. 
Defining the variable matrix as ࢟ = ,࢘) ୃ(ࢗ and the matrix (࢟)ࢎ = ,ࡵ−)  Eq. (4) can ,ࡵ summarized by the unit matrix (ࡶ
be represented as follows: ̇࢟(࢟)ࢎ = 0. (5) 

Since this equation is expressed by one function, i.e., Eq. (3), 
the robot model can be expressed by DAE. 

It is widely known that solving DAE is more challenging 
compared with ordinary differential equations and algebraic 
equations. Consequently, in this study, DAE is discretized and 
solved through the following procedure [17]. Initially, when 
the task execution time is defined as ܶ, it is divided into ܰ 
finite elements specified in the range [0, ܶ] and discretized. 
Next, the specified ݇ − 1 points within the range of the ݅-th 
finite element are collocated by the Gauss–Radau method. 
This process yields a total of ܰ × ݇ discrete points. Finally, a 
Lagrange polynomial is generated through these points and 

treated as a discrete equation of the DAE. By obtaining 
discrete equation, it is possible to solve the DAE with 
constraints on differential variables, such as velocity and 
acceleration, and boundary conditions at times 0 and ܶ. 

C. Constraints 
There are three main types of constraints on the 

optimization of the proposed method. The first type of 
constraints arises from the geometric relationships and 
motion parameters of the robot. Here, motion parameters 
refer to the variables, such as joint angles, angular velocities, 
and mobile platform velocity. These constraints include the 
definition of the robot model represented by DAE and the 
maximum and minimum values of the motion parameters. 
The second type of constraints arises from the target object. 
These include constraints that guide the robot in avoiding 
obstacles during movement. Additionally, if the object 
manipulated by the robot follows a predetermined trajectory, 
the motion of the robot hand is constrained by that trajectory. 
The third type of constraints arises from the restriction of 
robot motion at specific discrete times. These constraints 
come into play when the robot traverses a specified 
coordinate at a particular discrete time or when the robot 
stops within a specified discrete time range. 

V. OPTIMIZATION PROBLEM FOR DOOR-OPENING TASK 

A. Robot Model of Two-Dimensional 5DoFs Manipulator 
To briefly describe the DAE model shown in Section IV-B, 

we show an example of a commonly used planar 5 DoFs 
mobile manipulator. This robot incorporates a rotation 
mechanism and a slider mechanism, as shown in Fig. 2. In the 
door-opening task for a hinged door, the position of the door 
handle typically remains constant in the vertical direction 
(z-direction) during the opening process. Consequently, we 
consider the task in a 2D plane. 

The differential kinematics of the manipulator shown in 
Fig. 2 can be written as follows: 

൬̇ݔ୉̇ݕ୉൰ = ൬−݈ଵsin ߶ cos ߠ − dsin ଵ݈ߠ cos ߶ sin ߠ dcos ߠ ൰ ቌ߶̇݀̇̇ߠቍ + ൬ݔେ̇ݕେ̇൰ , (6) 

where (ݔ୉, ,େݔ) .୉) is the position of the robot handݕ  ߶ େ) andݕ
are the position and orientation of the mobile platform, 

Figure 3. Parameters for door opening Figure 2. A planar robot 
example with five DoFs 



  

respectively. ݀ is the length of the manipulator extended by 
the slider mechanism, ߠ  is the angle of the rotation 
mechanism, and ݈ଵ  is the length of the first link of the 
manipulator. Let (̇ݔେ୉,  େ୉) be the relative velocity of theݕ̇
hand based on the mobile platform. Transforming it as in 
Section IV-B, we obtain Eq. (7) which corresponds to Eq. (3), 

൬−10   0−1  −݈ଵsin ߶ cos ߠ − dsin ଵ݈ߠ cos ߶ sin ߠ dcos ߠ ൰ ⎝⎜
ߠ̇̇݀̇߶େ୉ݕେ୉̇ݔ̇⎛ ⎠⎟

⎞ = 0. (7) 

In this section, we provide a concise description using a robot 
with low DoFs. The door-opening task can also be executed 
by a robot with a high number of DoFs, as demonstrated in 
previous studies [7]. In such instances, the DAE model can be 
obtained by expanding the number of variables in Eq. (6) and 
applying the same transformation. 

B. Motion Parameter Constraints 
 The constraints expressing the limit values of the robot 
motion parameters can be written as follows: ࢞࡭ − ࢈ ≤ ૙, (8) 
where ࡭ is represented as ࡭ = ,ࡵ) ࢈ is represented as ࢈  is the robot’s motion parameter, and ࢞ ,ࡵ using the unit matrix ୃ(ࡵ− = ,୫ୟ୶࢞) ୃ(୫୧୬࢞  using the vector ࢞୫ୟ୶  of the maximum 
values and vector ࢞୫୧୬ of the minimum values. 

C. Door Constraints 
In Section Ⅲ-A, we divided the two types of door-opening 

tasks: “door opening for others” and “door opening for itself.” 
The latter involves both opening the door and moving to the 
opened area. Here, we introduce the constraints associated 
with the door’s structure. Let ݐଵ  be the execution time for 
opening the door, and ݐଶ be the execution time for moving to 
the opened area. The optimization calculation is considered in 
a 2D plane; for example, the coordinate of point O, as shown 
in Fig. 3, is defined as (ݔ୓,   .(୓ݕ

(1) Constraints due to door trajectory 

During the execution of the door-opening task, since 
the robot grasps the door handle to open, the trajectory 
of the robot hand follows the same circular arc as that of 
the handle. Therefore, the constraints are as follows: ‖࢘୉ − ୓‖ଶ࢘ = ݈୦ଶ + ݈ଶୣ, ୗ࢘‖ (9) − ୓‖ଶ࢘ = (݀ + ݈ୣ)ଶ + ݈୦ଶ, (10) 

where ࢘୉ is the coordinate of the robot hand, ࢘ୗ is the 
coordinate of the robot’s wrist, and ࢘୓ is the coordinate 
of the door rotation center. Each variable is represented 
by a 2D vector. ݀ is the distance from the hand to the 
wrist, ݈ୣ  is the distance from the hand to the door 
handle, and ݈୦  is the distance from the door rotation 
center to the door handle. The reason for including the 
trajectory of not only the robot hand but also the robot’s 
wrist in the constraints serves the purpose of averting 
the possibility of the robot hand slipping off the door 

handle. This is achieved by maintaining the robot hand 
perpendicular to the door, with the wrist securely 
attached to the hand. These constraints are applicable 
within the execution time interval [0,  .[ଵݐ

(2) Constraints due to Movement into the Opened Area 

In the task of opening a door for itself, when moving 
to the opened area, it is critical to avoid colliding with 
the door. Given that the door handle protrudes from the 
door, it should also be regarded as an obstacle. 
Considering these points, we define the following 
constraints. They are considered within the execution 
time [ݐଵ, ଵݐ +  .[ଶݐ

The first constraints pertain to collision avoidance 
with the door. Based on the definition shown in Fig. 3, 
the constraints are as follows: ‖࢘େ − ୓‖ଶ࢘ ≥ (݈ୢ + ݈୰)ଶ, ୉࢘‖ (11) − ୓‖ଶ࢘ ≥ ݈୦ଶ, (12) 

where ࢘େ is the coordinate of the mobile platform, ݈ୢ is 
the door width, and ݈୰  is the radius of the mobile 
platform as a circle. 

Furthermore, to prevent the robot hand from colliding 
with the door handle, we contemplate an elliptical 
region around the door handle, as shown in Fig. 3. The 
following equation is employed for this purpose: ൬ ୉ݔ + ݈୦݈ୢ − ݈୦ + ݈୭൰ଶ + ൬ݕ୉݈ୣ ൰ଶ ≥ 1. (13) 

This represents an elliptical, with the longest side as ݈ୢ − ݈୦ + ݈୭ and the shortest side as ݈ୣ. ݈୭ represents the 
offset that indicates how much clearance the robot hand 
has to avoid the door handle. 

(3) Constraints due to final standing position 

As a constraint on the final standing position of the 
robot, we initially consider a constraint based on the 
endpoint of the door-opening task. Assuming an 
effective angle of rotation for the hinged door as 90°, we 
define the following equation at discrete time ݐଵ: ݕ୉ = ୓ݕ − ݈ୣ. (14) 

As shown in Fig. 1, the final destination position of 
the robot differs between door opening for others and 
door opening for itself. Therefore, we establish 
constraints on the final position for each case. In the 
case of door opening for others, the final position should 
avoid intruding into the opened area to prevent 
interference with others’ actions. Hence, at discrete time ݐଵ, Eq. (15) should be satisfied: ݕେ + ݈୰ ≤ 0. (15) 

On the other hand, in the case of door opening for itself, 
the final destination position should be near the opened 
area to facilitate the next action. Therefore, at discrete 
time ݐଵ + େݕ :ଶ, Eq. (16) should be satisfiedݐ − ݈୰ ≥ 0. (16) 



 

As shown in these equations, constraints can be 
applied in specific discrete times to restrict the robot’s 
position and motion.  

VI. EXPERIMENT 

A. Experimental Settings 
The proposed method’s efficacy was validated through 

simulations and experiments using a life support robot known 
as HSR, manufactured by Toyota Motor Corp. The HSR is an 
8-DoF robot, comprising an omnidirectional mobile platform 
(3-DoFs) and a 4-axis manipulator with a lifting function 
(1-DoF). It is Equipped with an RGBD camera in the head, a 
3-axis force sensor in the hand, and an LRF on the mobile 
platform. In the experiment, the RGBD camera detected a 
door handle, the force sensor compensated for the door 
opening trajectory, and the LRF was used by the robot’s 
self-positioning. A detailed description is given later. 

The motion generation program was implemented in 
Python, using Pyomo [18] as the modeling tool for the 
optimization problem and IPOPT [19] as the solver for 
optimization calculations. The computer specifications used 
in the experiments were CPU: Intel (R) Core (TM) i9-9940X 
3.30GHz, GPU: NVIDIA GeForce RTX 2080 Ti. 

The proposed method addresses the door-opening task as a 
motion generation problem in a two-dimensional plane. For 
this setting, the HSR was first represented as a planar model, 
as shown in Fig. 4. The mobile platform (C1) involved three 
motion parameters (ݔ, ,ݕ ߶) , and the manipulator featured 
two DoFs with a rotation axis and a cylinder mechanism. The 
lifting and lowering of the manipulator were computed based 
on the original manipulator length and the distance of the 
extended manipulator, utilizing the Pythagorean theorem. 

In simulations, the door width ranged from 0.3 m to 0.8 m 
in 0.1 m increments, preparing six different door sizes. For 
the actual robot experiment, doors with widths of 0.3 m and 
0.6 m were used. The door handle’s position was detected by 
attaching an AR marker near the handle and detecting it using 
a camera mounted on the robot’s head. 

In each motion generation trial, the door width and handle 
position were predetermined. The robot’s initial posture was 
set in front of the door, a short distance away from the door 
handle, so that the AR marker was within the camera’s field 
of view. The robot detected the handle on the spot before 
grasping it and then initiated the optimization calculation. 
After optimization calculation, the calculated trajectory was 
transformed from the optimization calculation’s coordinate 
system to the world coordinate system to obtain the ideal 
trajectory. The execution time of the door-opening motion 
was manually set to 10 s for door opening for others and 14 s 
for door opening for itself, considering the HSR’s movable 
speed. In the case of the door opening for itself, the motion 
releasing the robot hand from the door handle was set when 
the door-opening phase concluded. Discrete points were set 
every 1 s, and the point selection method was set to three.   

B. Correction of Errors in Real Environment 
In the actual robot’s self-positioning, a combination of 

wheel-based odometry and hector-SLAM [20], which 

estimates the robot’s movement solely based on LRF data, 
was employed. Nevertheless, self-positioning may entail 
minor posture errors. Furthermore, an error in the handle 
position detection and depending on the type of hinge on the 
door, the center of rotation may not consistently be in the 
same position when the door is opened. These factors can 
result in a load being placed on the robot's hand even if the 
robot is moved according to the generated motion. To avoid 
this problem, offset values ࢞୭୤୤ୱୣ୲ is successively added to the 
trajectories of the mobile platform calculated by optimization. 
The offset value is calculated as follows: ࢞୭୤୤ୱୣ୲ = ,ࢌࢃ (17) 

where  ࢃ is a third-order real diagonal matrix that stores the 
weights of each component in the diagonal components. ࢌ is 
a three-dimensional vector and each component ݂௝ (݆ =1, 2, 3) is calculated based on each component value of the 
force sensor ୬݂୭୵௝  using the following formula: ݂௝ = ൜ 0୲݂௝ − ୬݂୭୵௝   ݂݅ ୬݂୭୵௝ ≤  ห ୲݂௝ห otherwise,  (18) 

Here, ୲݂௝ is a given force threshold for each component. From 
Eq. (18), ࢌ serves to encourage the robot hand to correct the 
trajectory in the opposite direction when the force exceeds the 
sensor’s threshold set by us is applied. 

VII. RESULTS AND DISCUSSION 

A. Results Using a Simulator 
Fig. 5 shows the simulation of the door-opening motion. In 

Fig. 6, the graphs present the trajectories of the robot’s hand 
and the mobile platform. The trajectories obtained in the 
planning are depicted dotted lines, while the trajectories 
observed during the execution of the door opening are 
depicted solid lines. The origin in Fig. 6 corresponds to the 
initial position of the robot. Additionally, the start and goal 
points in Fig. 6 signify the start and end points, respectively, 
of the trajectory calculated using optimization calculations. 
The horizontal axis of each graph represents the x coordinate 
and the vertical axis represents the y coordinate. 

Fig. 6(a) shows that in the case of door opening for others, 
the planned trajectories almost align with the trajectories 
during motion execution. Conversely, in the case of opening a 
door for itself, Fig. 6(b) shows that the trajectories toward the 
opened area are generally consistent, albeit with a 

Figure 4. The HSR model in two-dimensional plane 



 

discrepancy of several tens of millimeters between the 
planned trajectory and the executed result. This misalignment 
occurred specifically when the robot moved to the opened 
area while folding its outstretched arm after releasing the 
handle. The reason was that the distance between discrete 
points during motion generation was larger than that between 
other motion points. Resolving this issue entails potential 
solutions, such as increasing the number of discrete points 
and extending the execution time of the motion.  

B. Results in Real Environment 
Fig. 7 shows an example of actual experiments, while Fig. 

8 provides graphs presenting the trajectories of the robot’s 
hand and the mobile platform. The trajectories are delineated 
for both obtained in the planning (dotted lines) and observed 
during the execution (solid lines). In Fig. 8, the origin 
signifies the initial position of the robot, while the start and 
goal points denote the start and end points of the calculated

trajectory, which is similar to Fig. 6. The solid line 
representing the mobile platform in Fig. 8 reflects results 
subtracting the offset values using the force sensor described 
in Section VI-C. The comparison indicates that planned 
trajectories are the same as the trajectories when opening the 
door. However, disparities emerge in hand positions when 
moving to the opened area. Notably, the mobile platform’s 
positions exhibit minimal deviation from the ideal trajectory, 
suggesting that errors during the arm-folding motion persist 
and contribute to deviations from the ideal motion during 
execution, as observed in the simulator.  

VIII. CONCLUSIONS 
In this paper, we presented a method for generating robot 

motion specifically tailored for door-opening tasks. We 
proposed a method to achieve the generation of a robot 
motion in a single computation without dividing the 
door-opening task into subproblems. For this purpose, we 

Figure 6. Trajectories of hand and mobile platform at simulation. 

Figure 5. Door opening motion executed in simulator. 
(a) Opening the door for others.   (b) Opening the door for itself. 

(a) Opening the door for others.   (b) Opening the door for itself. 



 

Figure 8. Trajectories of hand and mobile platform on actual robot. 

(a) Opening the door for others. (b) Opening the door for itself. 

(a) Door-opening for others.   

(b) Door opening for itself. 

Figure 7. Door opening motion executed in real environment. 

proposed a DAE model derived from the robot’s differential 
kinematics and presented the formulation of a nonlinear 
optimization problem considering both velocity and 
acceleration. Constraints, including via points of the robot 
and collision avoidance, are integrated into this formulation. 
The effectiveness of the proposed method is validated 
through the execution of door-opening tasks in both 
simulated and real environments. The experiments involved 
various types of hinged doors, affirming that the method can 
generate appropriate motions for both cases: opening doors 
for others and door opening for itself. Furthermore, we 
addressed the modification of robot posture errors that might 
manifest in real-world environments.  

Future works will focus on expediting the optimization 
process. Additionally, we plan to showcase the versatility of 
the proposed method by applying it to tasks beyond door 
opening, leveraging its inherent characteristics.  
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