
  

 

Abstract— The manipulation of deformable linear objects 

(DLOs) by robots is challenging because of the complexity of 

modeling DLO dynamics. Although previous studies generally 

employed physical models and data-driven approaches to 

simulate DLO deformations, only a few studies have considered 

the contact of DLOs with the environment. In this study, we 

propose a framework integrating differentiable simulations with 

neural networks (NNs) to generate manipulation trajectories 

that avoid contact and achieve the goal shape. First, we 

implement a differentiable simulation to simulate the deform-

ation and interaction of DLOs via position-based dynamics. 

Thereafter, we utilize the backpropagation of losses from the 

differentiable simulation to optimize the parameters affecting 

the deformation of DLOs in the simulator and explore an ideal 

manipulation trajectory for the task via an NN controller. The 

simulation and real-world experimental results reveal that the 

proposed method can generate valid manipulation trajectories 

from offline learning, which can also function well in real-world 

applications using the optimized parameters. 

I. INTRODUCTION 

Our daily life and manufacturing processes involve 
interactions with various deformable linear objects (DLOs), 
such as ropes, cables, hoses, and surgical sutures. These 
objects are generally one-dimensional and flexible; they can 
undergo elastic deformations, such as stretching, bending, and 
twisting, under the action of an external force. These properties 
complicate the accurate simulation of the shapes of DLOs 
during their manipulation, thereby impeding the automation of 
their manipulation and control and representing a promising 
research topic in the robotics and automation community [1]. 
The DLO manipulation task can be classified into two 
categories [2]: one involves the explicit shape-control tasks 
(the goal) are aimed at controlling the shape of objects to 
desired geometric configurations. These tasks are often 
undertaken in wire harness routing. The other involves implicit 
shape-control tasks, which are not aimed at achieving special 
geometric configurations; they are aimed at achieving several 
high-level semantic comprehensions, e.g., knotting and 
unknotting ropes, as well as inserting thin strings. Here, we 
focused on the former. This is because the DLO-manipulation 
procedure (Fig. 1), e.g., the assembling of cars or aircraft, 
generally requires fixtures. Before inserting the DLOs into 
such fixtures (implicit shape control), an essential step 
comprises manipulating such DLOs from initial to desired 
shapes (explicit shape control). 

The aim of this study was to construct a framework for 
automating the manipulation of the shapes of DLOs. Based on 
steps a to b (Fig. 1), we assumed a scenario in which DLO was 
fixed at one end, allowed to move freely at the other end, and 
subjected to the force of gravity by hanging naturally. We 
attempted to manipulate DLO into a goal shape to facilitate the 
next step. However, owing to the limitations of the 
environmental configuration of the workspace, e.g., obstacles, 
DLO will contact with these obstacles during the manipulation 
regardless of the influences of such obstacles, resulting in a 
final DLO shape that is significantly different from the goal, 
as well as risking the breakage of DLO in a worse scenario, 
thereby impeding the entire procedure. Therefore, the 
challenge becomes exploring appropriate contact-avoidance 
strategies for achieving the DLO goal shape. 

To avoid contact and achieve the goal shape, previous 
studies explored various methods. Nozaki et al. [3] explored a 
mass-spring model (MSM)-based simulation strategy to 
simulate the shape of a moving cable; they formulated a 
control policy to avoid contact between the cable and 
environmental configuration by detecting the collisions from 
particles and obstacles. However, the utilized deformation 
parameters of the cables in the simulation required manual 
adjustments, and the control policy required modifications for 
different configurations. McConachie et al. [4] explored a 
neural network (NN)-based classifier to predict the state-
action pairs of a rope and plan the transition action for ensuring 
it avoided nearby obstacles. However, to impart the classifier 
with the ability to correctly predict collision-avoidance actions, 
a large number of datasets must be prepared and labeled; this 
represents a very expensive process. 

Based on the foregoing, we proposed a method, which 
seamlessly integrates simulation and NNs, to generate a 
trajectory that can avoid contacts and smoothly achieve the 
goal shape. We extended a position-based DLO simulation to 
ensure that the simulation could simultaneously simulate the 
interaction with the environment and be end-to-end 
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Fig.1. Schematics of a DLO mount procedure. a is the initial state of DLO, 

b manipulation the DLO from the initial state into a desired shape (the 

objective of this study and an essential aspect of the whole procedure), and 

c inserting the other end of DLO into the fixture. 
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differentiable. By exploiting the auto-differentiation capability, 
the gradients of the parameters in the simulation could be 
readily obtained; they can be used to automatically adjust the 
parameters to facilitate near-real-world simulation results. 
Subsequently, we incorporated an NN controller in the 
differentiable simulation, which empowered NN to learn from 
the simulation via the trial-and-error approach, as well as 
automatically update the trajectory until the goal was achieved. 
The contributions of this study are as follows: 

 We extended a PBD simulation to be end-to-end 
differentiable while simulating interactions with the 
environment and identified the simulation parameters 
via a gradient-based optimization method. 

 We constructed an NN controller that can learn from 
the simulation to generate a manipulation trajectory, 
which enables DLO to avoid contact with the 
environment configuration and reach its goal shape. 

 We confirmed the proposed method for generating 
manipulation trajectories by performing simulations 
and experiments on an actual robot. 

The remainder of this paper is structured as follows: 
Section II presents the extant studies (literature review). In 
Section III, we describe the problem setting of this study, the 
existing issues, and the method overview. In Section IV, we 
formulate each part of the method in detail. In Section V, we 
present the validation experiments via simulation and real-
world applications, after which we present the conclusions in 
Section VI. 

II. RELATED WORKS 

To achieve automated DLO shape-control tasks using 
robots, model-based approaches have been adopted for a long 
time. MSM [5] has been widely employed for DLO modeling 
owing to its facile implementation. Several studies have 
attempted DLO simulations based on the finite element model 
(FEM) [6-7], followed by performing shape control on the 
simulated DLO based on the simulation results. Additionally, 
the extant studies on DLO shape control adopted various 
approaches based on discrete elastic rods [8], Fourier-series 
[9], and visual servo [10] models. However, only a few of 
these studies considered the influence of the contact between 
DLOs and the environment configuration during 
manipulation; moreover, the parameters of these models, 
which determine the deformation of DLOs, must be manually 
tuned until the precision requirement is obtained to 
successfully proceed from simulation to real-world application, 
and this is time-consuming. 

Further, previous studies often applied data-driven 
approaches for DLO shape control. The core of this category 
of approaches comprises the utilization of NNs to learn 
forward kinematics models of DLOs from acquired data rather 
than physical models, i.e., mapping from the current state of 
DLOs to inputting actions. Thereafter, shape control can be 
achieved by solving the inverse kinematics. Yu et al. [11] used 
the radial basis function NN to model the mapping from the 
current state to the current local linear deformation model. 
Yang et al. [12] combined the interaction network and 
bidirectional Long Short Term Memory network to further 
learn the dynamic DLO model; they used the learned model in 
a model predictive controller to achieve the goal shape and 

improved the framework for sample-efficient, online 
dynamics model learning through trial-and-error interactions 
[13]. To improve the data-acquisition efficiency, Huo et al. 
[14] proposed an approach for training a network from a 
synthetic dataset to encode key points on DLOs. However, a 
large amount of required data, as well as the artificial design 
of the data-labeling method, account for the primary limitation 
of these approaches. Additionally, reinforcement learning 
(RL) [15-16] is often applied to the manipulation of 
deformable objects. However, RL methods are limited by the 
challenge of being transferred from simulation to real-world 
scenarios. 

Differentiable simulation has been recently applied to 
achieve end-to-end motion control and parameter 
identification of deformable objects. Liang et al. [17] 
constructed a differentiable cloth simulator that can be 
embedded as a layer in deep NNs. Hu et al. [18] proposed a 
differentiable, hybrid Lagrangian–Eulerian physical simulator 
for controlling the motion of soft robots. Chen et al. [19] used 
a differentiable physics engine to teach NNs how to represent 
high-dimensional point cloud data collected from deformable 
objects. Millard et al. [20] represented DLO with a tetrahedral 
FEM mesh and optimized the material parameters to minimize 
the difference between the real and simulated observations. 
Liu et al. [21] modeled extensible and inextensible rope-like 
objects based on position-based dynamics (PBD); the models 
solved parameter-estimation shortcomings and improved the 
matching of rope physics to real-world scenarios. Our 
approach is similar to that reported in [21], although we also 
added collision constraints to DLO simulation to allow it to 
simulate the interaction with the environment. We also 
embedded an NN controller in the simulation to generate the 
trajectory for DLO shape control. 

III. PROBLEM STATEMENT AND FRAMEWORK OVERVIEW 

A. Problem Statement 

We assumed the existence of a three-dimensional (3D) 
workspace in which the environment configuration is 
considered obstacles. The dimensions and positions of the 
obstacles were known. This workspace also contained an 
inextensible DLO of known length. One of its ends was fixed, 
and the other was grasped by the movable end-effector of the 
robot. Here, we assumed that DLO was in a quasi-static state, 
which means that its shape could only be determined by the 
actions of the end-effector and was not affected by inertial 
effects. Therefore, to mitigate the effect of the gravity of DLO 
on its shape, we specified that the end-effector of the robot 
only moved in three degrees of freedom, i.e., only translates 
and does not rotate. Fig. 2 illustrates that our objective was to 
determine a proper action trajectory that can manipulate the 
initial shape of DLO into the goal shape when the initial and 
goal shapes are known. 

B. Issues and approach 

During DLO manipulation additional deformations other 
than that caused by the end motion will occur if DLO contacts 
with obstacles. This will produce a final DLO shape that is 
significantly different from the goal one. This accounts for the 
highest impediment to achieving the objective. Hence, it is 
desirable to elucidate the effect of DLO contacts with obstacles 
to establish a control strategy for contact avoidance. Further, 



  

the existing control strategy can still be employed instead of 
modifying it when the configuration of the obstacle changes, 
which was another critical issue requiring a solution. Here, the 
issues are listed, as follows: 

1.  Simulating DLO shape, as well as the deformation 
caused by its contact during the manipulation. 

2. Designing a controller that can respond to environ-
mental changes to ensure DLO manipulation with 
contact avoidance to achieve the goal shape. 

To address Issue 1, we adopted physical simulation to 
simulate DLO deformation. Further, we added the collision 
response in this simulation and extended it to a differentiable 
framework. This allowed for the simulation of the effects of 
DLO contact with the environment, as well as the 
identification of the simulation parameters using the 
backpropagation of losses in the differentiable framework to 
achieve real-to-sim transfer. Regarding Issue 2, we embedded 
an NN controller in the DLO simulator. By adaptively 
optimizing the weights of NN, proper manipulation 
trajectories could be automatically generated for different 
environment layouts and goal shapes. Moreover, the generated 
trajectories could be transferred to real-world scenarios using 
the optimized parameters (sim-to-real). Fig. 3 illustrates an 
overview of our proposed framework, in which DLO modeling 
and NN mechanism are crucial. Hence, we will describe them 
comprehensively in the later sections. 

IV. POSITION-BASED MODELING  

We utilized cosserat rods [22] based on the PBD [23] 
model to simulate the dynamic state of DLO and extended it 
to the compliant (XPBD) [24] model to reduce the time 
required for simulation iteration. Dissimilar to the traditional 
force-based model (the acceleration is computed from the 
combined force applied to the object based on Newton’s 
second law of motion, after which the velocity and position of 
the object can be updated via time integration), PBD works 
immediately on the position of particles, which allows the 
simulator to be lightweight and facile implementation. Thus, 
an external manipulation of objects can be directly represented 
in terms of position, avoiding the overshooting issue of explicit 
integration in force-based models, and this is consistent with 
our objective (generating manipulation trajectories from the 
simulation). Another advantage is that the equations of this 
model are completely differentiable, allowing the application 
of the differentiable framework to readily implement its 
differentiability rather than adopting several extra 
approximation processing. Although PBD deviates from real-
world behavior slightly because it does not obey the physical 
laws. However, from our experimental results, its deviation 
from reality does not have a significant impact on the 
achievement of the manipulation task. Here, for brevity, we 

only outline the results; the detail equations and derivation 
process are presented in [22]. We utilized the framework, as 
well as constraints 1) and 2) from [22] to obtain the two 
following extensions: 

 We employed the XPBD method to solve the constraint 
equations. 

 We added the extra constraints functions 3), 4) and 5). 

 DLO was discretized into 𝑛 particles represented by their 
position and orientation (Fig. 4). The position is defined as 
vector 𝒙 = [𝒙1, 𝒙2, … , 𝒙𝑛] ∈ ℝ3𝑛  in Cartesian coordinates 
and the orientation is defined as a quaternion 𝒒 =
[𝒒1, 𝒒2, … , 𝒒𝑛−1] ∈ ℝ4(𝑛−1) , which corresponds to the 
rotation from the standard orthogonal basis (𝒆1, 𝒆2, 𝒆3) ∈ ℝ3, 
to the material coordinate whose origin is located in the middle 
of the adjacent particles. These two values are merged into 
𝒑 = [𝒙1, 𝒙2, … , 𝒙𝑛, 𝒒1, 𝒒2, … , 𝒒𝑛−1] for brevity of notation. In 
PBD, the corrections to the position and orientation ∆𝒑, in 
each time step are computed by solving a set of constraint 
equations, 𝑪(𝒑 + ∆𝒑) = 𝟎 . Further, the constraints can be 
linearized using Taylor-series expansion, as follows: 

𝑪(𝒑 + ∆𝒑) ≈ 𝑪(𝒑) + ∇𝒑𝑪∆𝒑 = 𝟎, (1) 

where ∇𝒑𝑪 is the Jacobian of 𝑪 w.r.t vector 𝒑. This equation 

can be solved by restricting ∆𝒑 to the derivative direction of 
the constraint function: 

∆𝒑 = 𝑴−1(∇𝒑𝑪)
𝑇

∆𝝀, (2) 

where 𝑴  is the mass/inertia matrix, 𝑑𝑖𝑎𝑔(𝑚1 ∙ 𝟏, 𝑚2 ∙
𝟏, … , 𝑚𝑛 ∙ 𝟏, 𝑰1, 𝑰2, … , 𝑰𝑛−1) ; the change in the Lagrange 
multiplier, ∆𝝀, can be computed separately for each constraint, 
𝑗 by Gauss–Seidel solution from XPBD. 

∆𝜆𝑗 = −(∇𝒑𝐶𝑗𝑴−1∇𝒑𝐶 𝑗
𝑇 + 𝛼̃𝑗)

−1
(𝐶𝑗(𝒑𝑖) + 𝛼̃𝑗𝜆𝑖𝑗). (3) 

Fig. 4. Geometry of the cosserat rods represented by position 𝒙𝑖  and 

quaternion 𝒒𝑖, indicating rotation from the world frame to material frame. 

 

Fig. 3. Overview of the proposed framework. The solid arrows indicate 

the forward propagation. The whole system is end-to-end differentiable, 
and we optimized the weights and simulation parameters of the NN 

controller using the backpropagation of losses, as indicated by the dashed 

arrows. 
 

Fig. 2. Schematics of the problem setting. 

. 



  

Here 𝜆𝑖𝑗 is the total Lagrange multiplier for constraint 𝑗 at the 

current iteration 𝑖 . 𝛼̃ = 𝛼/∆𝑡2,  where 𝛼  and ∆𝑡  denote the 
inverse stiffness and time step, respectively. 

Furthermore, we defined several constraints to represent 
the deformability of DLO, as follows: 

1) Stretch and shear constraint: based on the Cosserat 
theory, the strain measure for the shear and stretch was coupled 
to the difference between the tangent vector of the centerline 
and the normal of the cross-section. Therefore, the stretch and 
shear constraints 𝑪𝑠, is formed by two adjacent particles with 
positions 𝒙𝑖 and 𝒙𝑖+1 and the quaternion 𝒒𝑖, between them: 

𝑪𝑠(𝒙𝑖 , 𝒙𝑖+1, 𝒒𝑖) = (𝒙𝑖 − 𝒙𝑖+1) 𝑙⁄ − 𝑹(𝒒𝑖)𝒆3, (4) 

where 𝑙 is the resting length between the two particles. For 
simplicity, we assumed that all the 𝑙  values are equal. 𝑹(∙) 
denotes the rotation matrix converted from the quaternion. 
Next, the derivatives w.r.t the involved positions and 
quaternions were derived, as follows: 

∇𝒙𝑖
𝑪𝑠 = −∇𝒙𝑖+1

𝑪𝑠 = − 1 𝑙⁄ ∙ 𝟏3×3, (5) 

∇𝒒𝑪𝑠 = 2(ℑ(𝒆3𝒒̅) | ℜ(𝒆3𝒒̅)𝟏𝟑×𝟑 − [ℑ(𝒆3𝒒̅)]×), (6) 

where ℑ(∙) and ℜ(∙) denote the imaginary and real parts of the 
quaternion, respectively; 𝒒̅ is the conjugate quaternion; and 
[∙]× denotes the skew-symmetric matrix of a vector. 

2) Bend and twist constraint: the Darboux vector 𝛀, was 
used to define the strain measure for bending and twisting. The 
bend and twist constraint 𝑪𝑏 , coupled with the two adjacent 
quaternions 𝒒𝑖  and 𝒒𝑖+1 , and was used to compute the 
difference from the resting value: 

𝑪𝑏(𝒒𝑖 , 𝒒𝑖+1) = ℑ(𝒒𝑖̅𝒒𝑖+1 − 𝒒𝑖̅
0𝒒𝑖+1

0 ) = 𝛀 − ξ𝛀0, (7) 

𝜉 = {
+1 𝑖𝑓 |𝛀 − 𝛀0|2 < |𝛀 + 𝛀0|2,

−1 𝑖𝑓 |𝛀 − 𝛀0|2 > |𝛀 + 𝛀0|2.
(8) 

The derivations w.r.t the involved quaternions were derived, 
as follows: 

∇𝐪𝑖
𝑪𝑏 = −(−𝒒𝑖+1 | 𝑞𝑖+1,0𝟏3×3 − [𝒒𝑖+1]×), (8) 

∇𝐪𝑖+1
𝑪𝑏 = +(−𝒒𝑖  | 𝑞𝑖,0𝟏3×3 − [𝒒𝑖]

×). (9) 

3) Direct distance constraint: as we considered an 
inextensible DLO, the distance between the adjacent particles 
must be kept constant during the simulation. The stretch 
deformation can be limited by setting the inverse stiffness to 
𝛼 = 0 in (3). However, as the utilized Jacobi iterative solver 
in (2) contains errors, it cannot guarantee a constant distance. 
Therefore, we introduced an additional explicit distance 
constraint 𝑪𝑑, and used the direct solution of the tridiagonal 
matrix algorithm proposed in [25] rather than the approximate 
Jacobi solution, as follows: 

𝑪𝑑(𝒙𝑖 , 𝒙𝑖+1) = ‖𝒙𝑖 − 𝒙𝑖+1‖ − 𝑙, (10) 

where ‖∙‖ denotes the 𝐿2 distance between two particles. The 
derivation w.r.t the positions can be effortlessly computed as 

∇𝒙𝑖
𝑪𝑑 = −∇𝒙𝑖+1

𝑪𝑑 = 𝒙𝑖 − 𝒙𝑖+1 ‖𝒙𝑖 − 𝒙𝑖+1‖.⁄ (11) 

4) End constraint: in this study, we considered the case in 
which one end of DLO was fixed, whereas the other was 

available for translational motion. Therefore, the bending and 
twisting of the part near the end particle would be smaller than 
that near the middle part. To achieve this difference, we 
defined two coordinate frames, 𝒒0, 𝒒𝑛 (Fig. 4), at the two end 
particles representing the grasping/fixing pose. Thereafter, two 
extra bend-twist constraints 𝑪𝑏(𝒒0, 𝒒1)  and 𝑪𝑏(𝒒𝑛−1, 𝒒𝑛) , 
were added to constraint 𝑪𝑏. 

5) Collision constraint: the collision response of DLO with 
the obstacles must be handled in our problem setting. Here, we 
did not consider the self-collision of DLO for reducing the 
computation time. Collision handling in PBD can also be 

treated as a constraint. First, we tested the ray 𝒙𝑖
𝑡 → 𝒙𝑖

𝑡+1, for 
each particle 𝑖, to determine if the ray penetrated the obstacle. 
We computed the entry point 𝒙𝑖𝑐, and surface normal 𝒏𝑖𝑐, at 
this position. 𝒙𝑖𝑐 was replaced by the point on the surface of 

the obstacle nearest to 𝒙𝑖
𝑡 if the ray lies completely inside the 

obstacle, and 𝒏𝑖𝑐 is replaced by the normal at the nearest point. 
Next, a unilateral constraint function 𝑪𝑐(𝒙𝑖) = (𝒙𝑖 − 𝒙𝑖𝑐) ∙
𝒏𝑖𝑐, was defined, and an inverse stiffness 𝛼 = 1, was added to 
this constraint. The derivate w.r.t the position can be readily 
obtained by ∇𝒙𝑖

𝑪𝑐 = 𝒏𝑖𝑐 . 

V. DIFFERENTIABLE FRAMEWORK 

A. Real-to-sim stiffness identification 

To obtain a real-world DLO shape that is close to the 
simulation shape to generate the manipulation trajectory in the 
simulation and transfer it to the real-world, we must identify 
the inverse stiffness controlling DLO deformation in the 
simulation from the action and state of real-world DLO. 
Additionally, as the DLO assumed in this study is inextensible, 
with movable ends performing translational motions, only its 
bending deformation can be considered, i.e., the inverse 
stiffness 𝛼𝑏, in the bend-twist constraint must be identified. 

We proposed a greedy algorithm for perceiving a chain of 
real-world DLOs (Algorithm 1). The RGB-depth image 
containing DLO; the length 𝑙, between adjacent particles; and 
the number of particles are given as input. The output 
comprises a chain, 𝒚 = [𝒚1, 𝒚2, … , 𝒚𝑛] ∈ ℝ3𝑛, with the same 
dimension as 𝒙  in the simulation to represent the actual 
geometry of DLO. To determine the geometry of DLO, we 

Algorithm 1 DLO detection and chain generation 

1 Input Image, l, n. 

2 extracted ← Binarize(Image) 

3 thinned ← Skeletonize(extracted) 

4 corners ← Corner detection(thinned) 

5 thinned3d, corners3d ← Pixel-to-3d(thinned, 

corners) 

6 start ← corner3d[0] 

7 for each 𝒚𝑖 ∈ 𝒚 do 

8 for each 𝒖 ∈ 𝑡ℎ𝑖𝑛𝑛𝑒𝑑 do 

9         𝑑𝑖𝑠𝑡 ←  |‖𝒖 − 𝑠𝑡𝑎𝑟𝑡‖ − 𝑙| 
10     end for 

11  𝒚𝑖 ← 𝑡ℎ𝑖𝑛𝑛𝑒𝑑3𝑑[𝑎𝑟𝑔𝑚𝑖𝑛(𝑑𝑖𝑠𝑡)] 
12      𝑠𝑡𝑎𝑟𝑡 ← 𝒚𝑖 

13 end for 

14 𝒚𝑛  ← corner3d[1] 

15 return 𝒚 

 



  

must first detect DLO from the environment by semantic 
segmentation, etc. But this is beyond the main scope of this 
study. Therefore, we significantly differentiated the DLO 
color from the background so that the part in the image can be 
effortlessly detected by color thresholding. Lines 2–5 
represent image processing based on existing libraries. The 
procedure is as follows: first, the pixels of the DLO part were 
extracted by binarization, after which the centerline of the 
DLO was extracted by skeletonization. Next, both ends of 
DLO were determined by a Harris corner detector. Finally, the 
centerline and ends were converted into 3D point clouds. Lines 
7–13 represent a greedy algorithm in which 𝑛 particles were 
sampled uniformly on the point cloud of the centerline, 
keeping the error between the distance of adjacent particles 
and 𝑙 under a threshold. By this method, we could achieve the 
rapid tracking of DLO geometry and maintain its 
inextensibility. 

Next, we manipulated the real-world DLO, following a 
given trajectory while recording 𝔴 frames of its geometry by 
the proposed tracking algorithm. In the simulation, DLO is 
also driven by the same trajectory. The same geometry value 
was also recorded at the same position. The loss function 𝐿𝑠, 
involving the inverse stiffness 𝛼𝑏, between the simulation and 
real world is defined as 

𝐿𝑠(𝛼𝑏) = ∑ ∑‖𝒙𝑖
𝑗

− 𝒚𝑖
𝑗
‖

𝑛

𝑖=1

𝑛⁄

𝔴

𝑗=1

. (12) 

The gradient w.r.t 𝛼𝑏  can be simply obtained by the 
backpropagation of the error in the differentiable framework. 
Afterward, the gradient-based optimization method, e.g., 
gradient descent, can be used to estimate 𝛼𝑏. The result of the 
optimization is presented in Section V. 

B. Generation of the sim-to-real trajectory 

This trajectory is for driving DLO from the start to the end 
while avoiding obstacles along a vertical plane during 
manipulation. Therefore, the trajectory must be a universal 
arc-like curve, although its exact dimensions depend on the 

goal shape. Thus, we defined a set of parameters to control the 
dimension of the trajectory and use NN to predict them. 
Contrary to the method of directly predicting discrete points 
on the trajectory, our method can prevent the issue of 
simulation failure due to overshooting by setting boundaries to 
limit the trajectory within a valid range. 

1) Representation of the manipulation trajectory: a 
manipulation trajectory is segmented into 𝑘  subtrajectories 
𝑻 = (𝑻1, 𝑻2, … , 𝑻𝑘) (Fig. 5). This allows for the adjustment of 
the trajectory parameters according to the current state of DLO 
to predict the next action 𝜺𝑖 . The geometry of each 
subtrajectory was defined by five parameters 𝑻𝑖 =
(𝑠, 𝜑, 𝜃, ∆𝑥, ∆𝑧). Here, we described the process of computing 
the action 𝜺𝑖, based on these parameters. 𝑨 denotes the initial 
position of the trajectory when the goal shape of DLO is given; 
the position of its movable end is regarded as the final position 
𝑩, of the trajectory. Thus, the center 𝑪, of the subtrajectory is 
determined, as follows: 

𝕯 = 𝑩 − 𝑨, (13) 

𝑪̅ = 𝑠𝕯 + 𝑨, (14) 

𝑪𝑥 = 𝑪̅𝑥 + ∆𝑥, 𝑪𝑦 = 𝑪̅𝑦, 𝑪𝑧 = 𝑪̅𝑧 + ∆𝑧, (15) 

where 𝑪̅ is the point on line 𝑨𝑩, ∆𝑥 and ∆𝑧 are the offsets of 

point 𝑪̅ on the 𝑋- and 𝑍-axes, respectively. Furthermore, 𝜺𝑖 
can be obtained by 

𝓝 = −𝕯 × (𝒆3 ∘ 𝑟𝑜𝑡(|𝕯|, 𝜃)), (16) 

𝜺𝑖 = (𝜺𝑖−1 − 𝑪) ∘ 𝑟𝑜𝑡(𝓝, 𝜑), (17) 

where 𝓝 denotes the normal of plane 𝒫𝑢  and 𝜃  denotes the 
angle between planes 𝒫𝑢 and 𝒫𝑣  in radians; |∙| denotes vector 
normalization, 𝝉 ∘ 𝑟𝑜𝑡(𝝊, 𝜙)  means rotating vector 𝝉  by 𝜙 
radians about the 𝝊 axis. The initial value of 𝜺𝑖 is equal to the 
initial position 𝑨, of the trajectory. 

2) Neural network: NN is constructed with three fully 
connected layers (Fig. 6). The input layer is the current state, 
𝒙𝑡, of DLO and previous parameters 𝑻𝑖−1, of the subtrajectory. 
This layer is followed by two hidden layers with tanh 
activation functions. The output layer is the rate vector 𝜸𝑖, of 
the parameters of the current subtrajectory. As the value of the 
tanh function must be [−1,1], the trajectory parameters can be 
limited to a valid range after multiplying them by a max vector 
𝚲, as follows: 

𝑻𝑖 = 𝜸𝑖 ∙ 𝚲. (18) 

To implement the backpropagation of the loss, thus 
updating NN via gradient-based optimization, to predict the 
appropriate trajectory parameters, a loss function 𝐿𝑝, must be 

manually designed. In the application of differentiable 
simulation, the simplest 𝐿𝑝 can be the difference between the 

final state of the object and its goal state, e.g., 𝑀𝑆𝐸(𝒙ℎ, 𝒙∗), 
where 𝑀𝑆𝐸 is the mean-squared error ℎ denotes the number 
of simulation time steps, and 𝒙∗ is the goal particles of DLO. 
However, ignoring the collision of the DLO with the obstacle 
will result in local optimization without achieving the task. 
Therefore, based on the direction of loss descent (Fig. 7), we 
added the difference between the particle at the position of the 
collision and its corresponding goal particle into 𝐿𝑝 , as 

follows:  

Fig. 5. Definition of the arc-like subtrajectories (green solid line). Each 

subtrajectory 𝑻𝑖 , is represented by discrete points 𝜺𝑖  (green hollow 

circle), which are computed from five parameters (𝑠, 𝜑, 𝜃, ∆𝑥,  𝑎𝑛𝑑 ∆𝑧), 

beginning from 𝑨 (cyan hollow circle) and ending in 𝑩 (magenta hollow 

circle). 

Fig. 6. Architecture of NN. The numbers in the bottom brackets indicate 
the number of neurons in the corresponding layers. 

 



  

𝐿𝑝 = 𝜔1 ∑ 𝐿𝑐
Γ

+ 𝜔2𝑀𝑆𝐸(𝒙ℎ, 𝒙∗), (19) 

with 

𝐿𝑐 = {
|𝒙𝑖,𝑥

𝑡 − 𝒐𝑐,𝑥|  𝑖𝑓 𝒙𝑖
𝑡  𝑐. 𝑤. 𝑠𝑢𝑟𝑓𝑎𝑐𝑒,

|𝒙𝑖,𝑥
𝑡 − 𝒙𝑖,𝑥

∗ | + |𝒙𝑖,𝑦
𝑡 − 𝒙𝑖,𝑦

∗ |  𝑖𝑓 𝒙𝑖
𝑡  𝑐. 𝑤. 𝑠𝑒𝑐𝑡𝑖𝑜𝑛,

(20) 

where 𝜔1  and 𝜔2  are the weight factor to trade-off among 
different loss terms, Γ denotes the number of collisions in the 
total time steps. 𝒐𝑐  is the center of the cross-section of the 
obstacle, |∙|  denotes the absolute value and 𝑐. 𝑤.  means 
contact with. In the next section, we confirmed that the task 
can be achieved using 𝐿𝑝 involving contact effects, whereas 

the one without considering contact effect cannot.  

In summary, the process of determining an appropriate 
trajectory from the differentiable simulation via the trial-and-
error approach based on the backpropagation of the loss is 
shown in Algorithm 2. The first line represents the 
initialization. In addition to assigning initial values to some 
parameters in the simulation, must allocate initial values to the 
weights 𝒘 and biases 𝒃 of the fully connected layers in NN, 
for which we adopt the Xavier initial values. Next, we updated 
the parameters of NN via the backpropagation of the loss 
(Lines 7–9, where 𝜂 denotes the learning rate) and predicted 
the trajectory parameters (Line 4). The output is a list of 
actions (𝜺1, 𝜺2 … , 𝜺ℎ) for all the time steps computed by the 
trajectory parameters, i.e., a discrete trajectory curve. 

VI. EXPERIMENT 

We implemented DLO simulation, as described in Section 

IV using a differentiable framework—Taichi [26]. Thereafter, 

we constructed the same configuration in the real world as in 
the simulation. The actual DLO was a fiber rope (length = 445 
mm, diameter = 8 mm, and color = white). One end of the DLO 

was fixed to a vertical resin plate, and the other was grasped 
by a CR5 robot. The background color was black. The RGB-
depth images of the rope were captured by a calibrated Azure 
Kinect camera, and the image was processed using OpenCV 
[27], following Algorithm 1. The rope was discretized into 30 
particles and 29 segments, i.e., 𝑛 = 30  and 𝑙 = 445/29 ≈
15 mm. The time step ∆t of the simulation was 0.01 sec.  

A. Real-to-sim stiffness identification 

To obtain the geometries of the rope relative to the 
different actions from the real-world experiment and 
simulation, first, we formulated an arc trajectory in the real 
world and discretized it into 400 waypoints. Next, the end of 
the robot was controlled to move sequentially through these 
waypoints. Concurrently, all the chain points (𝒚1, 𝒚2, … 𝒚30) 
of the rope were recorded at 10 intervals using our proposed 
tracking algorithm (Fig. 8). Thus, we obtained 40 frames 
(𝔴 = 40)  of the geometries of the rope. Second, in the 
simulation, we subjected the same 400 waypoints to the action 
of the rope at each time step. Additionally, 40 frames of the 
chain points (𝒙1, 𝒙2, … 𝒙30) of the rope were recorded at the 
same interval as that in the real-world experiment. 

Afterward, we used the backpropagation of the loss to 
obtain the derivative of the loss w.r.t the inverse stiffness of 
the bend constraint 𝛼𝑏 , and optimized 𝛼𝑏

∗  based on the 
gradient-descent method to minimize the difference between 
the losses in the simulation and real-world experiment. Thus, 
we set several optimization parameters: the initial value of 

𝛼𝑏
0 = 0.1, learning rate 𝜂 = 1.0−4, and iterations = 300. Fig. 9 

shows that the loss was finally converged to ~0.2 𝑚, while the 
optimal 𝛼𝑏

∗ = 0.0089 at this moment. 

B. Generation and validation of the manipulation trajectory 

We confirmed that using the proposed NN controller and a 
loss function, considering the contact, can generate an offline 
manipulation trajectory exhibiting contact avoidance to 
achieve the goal shape in the simulation and confirmed that the 
execution of the real-world trajectory achieves the task using 

Fig. 7. Illustration of the direction of the loss-descent function when 

collisions occur. The arrows (dotted line) indicate the direction that must 
be moved to avoid collisions. 

 

Algorithm 2 Differentiable framework for learning trajectory  

1 Input 𝒙1, 𝒙∗, 𝒘1, 𝒃1, 𝚲, ℎ 

2 while 𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do 

3     for each 𝒙𝑡, 𝑻𝑖 do 

4         𝑻𝑖 ← 𝑁𝑁(𝒙𝑡 , 𝑻𝑖−1, 𝒘𝑖 , 𝒃𝑖) 

5         compute 𝜺𝑡 using (17) 

6         𝒙𝑡+1 ← 𝐷𝑖𝑓𝑓𝑆𝑖𝑚(𝜺𝑡 , 𝒙𝑡) 

7         compute 𝐿𝑝 using (19) 

8         compute ∇𝒘𝐿𝑝, ∇𝒃𝐿𝑝 using auto-differentiation 

9          𝒘𝑖+𝟏 ← −𝜂∇𝒘𝐿𝑝, 𝒃𝑖+1 ← −𝜂∇𝒃𝐿𝑝 

10     end for 

11      𝑖𝑡𝑒𝑟 + 1 
12 end while 

13 return (𝜺1, 𝜺2 … , 𝜺ℎ) 

 

Fig. 8. Real-world appearance of the rope (left) and simulation (right). 

The cyan circles represent the perceived shape, 𝒚, of the rope using the 

tracking algorithm. Both sides are moved along the given trajectory 

(green line) and 40 frames were recorded simultaneously. 

 

Fig. 9. Graph of the loss value versus number of iterations. 

 



  

the optimal stiffness from the previous section. The 
experimental settings were as follows: two cylinders (diameter 
= 60 mm and height = 60 mm) were fixed to the same resin 
plate as the rope, and the distance between the centers of both 
cylinders was 100 mm. We used AR markers to predetermine 
the positions of the cylinders and removed them before 
moving the rope. The goal shape of the rope, which was 
partially between the gaps of the cylinders, was generated in 
the simulation. The total number of time steps for the 
simulation was 300 (ℎ = 300). The trajectory was segmented 
into 10 subtrajectories (𝑘 = 10), and the max vector of the 
parameters of the subtrajectories was 𝚲 =
(0.008, 1.5, 0.5, 0.05, 0.05). TABLE I presents the values of 
the other learning-related hyperparameters. 

We experimented with four different sets of layouts. In the 
simulation (Fig. 10) NN could generate an arc-like trajectory 
by learning iteratively from the simulation when the goal 
shape of the rope is given Thus, driving the movable end of the 
rope along this trajectory can achieve contact avoidance and 
achieve the goal shape. This demonstrates that the 
manipulation trajectory of DLO can be effectively generated 
by a framework that integrates NNs with the simulation. 
Furthermore, even if the environment configuration changes, 
it is not necessary to redesign or modify the controller or adjust 
any parameters as the method exhibits generalizability. 
Conversely, the simulation results can be extensively 
reproduced by executing the trajectory that was transferred 
from the simulation to the real world. This demonstrates that 
the simulation-generated trajectories could also apply to the 
real world. Further, this confirms that the parameter identified 
by the backpropagation of loss from differentiable simulations 
is valid in the real world. However, when the rope was 
subjected to considerable deformation, the gap between the 
simulation and real-world results increased significantly (see 

Fig. 10, Layout 2). This is mainly because an actual rope 
produces a certain plastic deformation degree, whereas our 
simulation only considered elastic deformation. 

Additionally, we also tested the loss function by ignoring 

the contact-related term in Layout 1, i.e., pure 𝑀𝑆𝐸(𝒙ℎ, 𝒙∗). 
Fig. 11 shows that the loss value finally converged to the 
moment when the rope contacted the cylinder and could not 
decrease further. This is because, under pure 𝑀𝑆𝐸 , the 
contact-avoiding trajectory rather increased the loss value such 
that NN did not update in the direction away from the cylinders. 
However, under 𝐿𝑝, the loss value was decreased to less than 

0.01 m, consequently achieving the goal shape. This compa-
rison demonstrates the superiority of our proposed loss 
function, which considers the effect of contact. 

VII. CONCLUSION 

Here, we introduced a method, which integrated 
simulations and NNs, to achieve the shape-control task of 
DLOs while considering the effects of contacts. First, we 
extended the simulation based on the PBD model that could 
simulate DLO deformation when manipulated and in contact 
with the environment, as well as are end-to-end differentiable. 
Thereafter, the backpropagation of the loss from the real-world 
to the simulation was applied to identify the stiffness 
parameter in the simulation. Finally, we used an NN controller 
to predict the manipulation trajectory from a simulation that 
could achieve the task. The experiments demonstrated that the 
backpropagation of the loss could ensure the automatic 
identification of the parameters in the simulation. 
Concurrently, the offline-generated trajectory from the 
simulation is available in the real-world scenario, further 

Fig. 11. Result of the simulation using the pure 𝑀𝐸𝑆  (left) and 

comparison between the learning curves using 𝑀𝑆𝐸 and 𝐿𝑝 (right). 

 

TABLE I Hyperparameters 

Parameters Meaning Value 

Iterations Number of iterations 200 

𝜂 Learning rate 0.001 

𝜔1 Weight factor of contact term 0.1 

𝜔2 Weight factor of MES term 1.0 

 

Fig. 10. Results of the motion along the generated trajectories (green line) in the simulation (top) and real-world (bottom) under four different layouts. 

The magenta circles indicate the goal shape, the orange arrow indicates the manipulation from the initial shape to the final shape. 

Layout 1 Layout 2 

Layout 3 Layout 4 



  

confirming the effectiveness of this method. Future studies 
will include the online generation of manipulation trajectories 
with feedback to cope with more complex environment 
configurations and goal shapes.  
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