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Abstract—An effective human resource development system
is desirable for mass-production sites, such as sewing factories,
which rely on skilled human resources. The manipulation of ob-
jects such as clothes, cushions, and stuffed toys during production
can deform them, making it difficult to either transfer them
directly among people or introduce automation technology to do
it. In this study, considering this, we developed a demonstration-
based teaching system. The proposed system presents a learner
with an instructional video that overlays not only the posture
of the skilled operator’s hand, but also the contact force. This
allows the learner to know the manipulated part of the object,
the employed hand posture, and the applied force, even if
the occlusion problem occurs. The proposed system does not
require learners to wear any auxiliary devices for receiving
instructions while learning, making it highly convenient. We
implemented the system and confirmed that it could successfully
provide instructions for handling the issue of deformable object
manipulation.

Index Terms—deformable object manipulation, augmented re-
ality, skill transfer

I. INTRODUCTION

Industrial manufacturing automation has advanced rapidly
owing to the use of industrial robots; there are several advan-
tages to mechanized production. For example, when compared
with manual production, the worker costs are reduced, and
a certain level of product quality is guaranteed. Automation
is widely used in the consumer electronics and automobile
manufacturing industries, and various automation technologies
have been developed accordingly [1], [2], [3]. However, de-
formable objects such as clothing and stuffed animals are still
widely manually manufactured by skilled workers. Performing
accurate shape recognition and dealing with the manipulation
of deformable objects are both challenging issues. Although
automation techniques have been proposed in these areas
[4], [5], they have not resulted in the complete elimination
of manual work from all the related processes. Digitizing
and visualizing the behaviors of skilled operators during the
manipulation of deformable objects is a potential way to
mitigate this issue.

This study aims to develop a novel demonstration-based
training system for visualizing situations during the manip-

ulation of deformable objects. Under the proposed system,
it is assumed that the work status of a skilled operator is
superimposed on the screen and used as a reference for an
unskilled operator to learn the task. Under such an assumption,
it is necessary to indicate the posture of the skilled worker’s
hands during an operation. However, this information is insuf-
ficient because the degree of deformation of a flexible object
varies depending on the applied force. Considering this, a
sensor can be attached to a skilled operator’s fingertip for
force measurement; preferably, the measurement should not
impair the sensation in their fingertip. To achieve this, we
introduced a sensor that considered fingernail deformation. It
is also important for the system to have a viewing function
and interface for training nonskilled operators. In this regard,
we are working on the integration of multiple viewpoints
and rewind functions to increase the convenience of existing
training systems.

This paper is structured as follows. The next section presents
the related work. Section III introduces the design goals of
the training system. Section IV explains the construction of
the proposed training system and the associated operation
methods. Section V describes the verification of the system
operation and the fundamental evaluation with respect to
training for deformable object manipulation. Finally, section
VI concludes the paper.

II. RELATED WORK

Most apparel manufacturing facilities rely on human labor-
ers for garment production; the development and assessment of
worker performance in these facilities has attracted significant
attention [6], [7]. In [6], the authors considered the power
consumption of a sewing machine as a feature in assessing the
performance and task difficulties of workers. They could adapt
the system to a significant number of sewing lines concurrently
without needing to recognize complex garment product shapes.
In [7], an augmented reality (AR) mobile application was
proposed for teaching the way to use sewing machines. This
AR application was compared with a traditional learning
method using a handout; the results showed that the application



could provide a better learning performance, efficiency, and
satisfaction in learning experience. The success of this simple
method, which employs conventional AR markers and pre-
designed teaching videos, indicated the validity of applying
immersive technologies to learning systems.

The application of AR and Virtual reality (VR) technologies
in the field of task learning has also drawn attention. In [8] and
[9], the authors developed systems to teach the assembly task
process using these technologies. They used text instructions
to indicate the current or subsequent step in the process. It is
necessary to recognize the manipulated target objects or assem-
bly tools to present this information appropriately. To provide
users with more detailed information, several studies have
aimed to recognize the surrounding environment in real time
[10], [11]. In [10], the authors attempted to use deep learning
technology to detect working-area tools and provide users
with multimodal instructions. They reported that the proposed
system helped reduce the time and errors in an assembly task.
In [11], the authors proposed a method using wearable AR
glasses (Microsoft HoloLens) to reconstruct three-dimensional
(3D) replicas of the objects and provide 3D spatial guidance
by superimposing these replicas onto the real environment. As
mentioned previously, in the manufacturing scenario, support
from AR or VR technology can potentially improve workers
performance. However, in tasks in which deformable objects
are manually handled, as previously discussed, applying such
technologies for object recognition is difficult owing to the
problems of deformation and hand-hand occlusions. Based on
the above discussion, in this study, we adopted an approach
to apply AR/MR techniques for training without providing
an immersive environment or recognizing users’ movements.
We constructed an interactive system that provided multi-
viewpoint instruction videos in which the instructor’s hand
movements and the degree of applied force were overlaid
according to the task process with the aim of improving the
overall learning effect.

III. DESIGN GOALS

The following section summarizes the primary features
of the proposed demonstration-based instruction system for
deformable object manipulation.

1) The system provides instructional videos performed by
a skilled instructor in advance. The hand posture that is
adopted and the forces exerted on the fingertips by the
object during the work are overlaid.

2) The system provides multiperspective views on the in-
struction videos to reduce the occlusion problem, support
depth perception, and observe the details associated with
work object deformation. Furthermore, perspectives can
be switched whenever the user wishes.

3) The system does not use specific devices and sensors
for instructions to reduce the complexity of learning
preparation and avoid conflicting with proper practice
guidelines.

These features support the use of the system in training
an unspecified number of factory workers. Therefore, it is
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Fig. 1: Overview of the proposed workbench: (1) aluminum
frame, (2) web cameras, (3) control server, (4) display, (5) AR
markers, and (6) force sensors.
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く，前述の ARマーカの姿勢推定においても，手の姿勢や視点の状態に対してロバストに
行うことが可能になる． 
 次に教示システムの動作環境の構成を述べる．構成の例を図 4.3(a)に示す．カラーカメ
ラを取り付けるための固定用フレーム(1)を机上に配し，フレームには複数台のカラーカメ
ラ(2)を設置する．計算機は二台で構成されており，一台の計算機(3)には上述のセンサ類
が接続されている他，記録されたデータが保持されており，それをもとに映像を生成す
る．もう一台の計算機(4)は利用者に映像を提示するためのものとなっている．ARマーカ
(5)は右手と左手の姿勢の獲得用をそれぞれ要するほかに，机上に各カラーカメラの基準位
置とする目的のものを配置する．これを基準マーカとする．作業の記録に用いるセンサユ
ニット(6)は図 4.3(b)に詳細を示す．手の甲に取り付ける ARマーカ(1)と指先に取り付け
る接触力センサ(2)，手袋として取り付けるデータグローブ(3)から構成されている．ここ
に示した構成はデータの記録から教示までを一貫して行える環境である．教示のみを行う
際は映像提示用の計算機とそれに用いるデータが記録されている計算機が含まれる構成で
あればよく，様々な環境で教示を行うことが出来るようになっている． 

4.2 ソフトウェアの構成 

 実装するソフトウェアの概形を図 4.4に示す．このうち，センサに関する部分と，教示
用映像に関する部分に大別し，以下で各部に関して述べる． 

4.2.1 センサに関するソフトウェア 

(a)システム動作環境構成例 
(1)固定用フレーム，(2)カラーカメラ， 
(3)計測用計算機，(4)表示用計算機， 

(5)ARマーカ，(6)センサユニット 

図 4.3 ハードウェア構成例 

(b)センサユニットの例 
(1)ARマーカ， 

(2)装着型指先接触力センサ 
(3)データグローブ 

(2)(1)

(3)

Fig. 2: Left : Overview of the data glove, contact force sensor,
and 3D finger model. (1) AR marker, (2) fingertips force
sensor, and (3) data glove. Upper right: zoomed-in image of
the force sensor. Bottom right: 3D finger model.

necessary to reduce the burden of learner preparation and the
cost of instruction as much as possible. Based on this, we
decided to use a general monitor to present instruction videos
and avoid measuring or providing feedback about learners’
activities. However, skilled instructors should be equipped with
sensors to properly measure their operational abilities. Both
the measurement method and the parameters to be measured
are important considerations. Since the manipulation of de-
formable objects involves changing the shape of an operator’s
hand in various ways, the direction of the back of their hand
and the joint angles of their fingers are considered to be
important information. Additionally, force is often exerted on
fingertips to hold them down or induce desirable deformations.

Thus, it is preferable to measure the force applied to the
fingertips. In this study, a combination of a data glove and a
fingertip force sensor was used. Further details are presented
in the next section.
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Fig. 3: The Schematic of the proposed system.

IV. OPERATION INSTRUCTION SYSTEM

A. System Appearance

Fig. 1 shows the proposed instruction system. The cameras
are attached to an aluminum frame that can be placed on
a desk. An operator’s hands can be observed from multiple
viewpoints with a maximum of three HD web cameras (Log-
itech C615n); one is set at the top, and the others are set on
either side of the frame. Each camera can record videos with
a 1920×1080 resolution at 30 fps. Additionally, AR markers
were used; one was placed on the desk and to calibrate the
external camera parameters. These markers could precisely
calculate the new positions of cameras even after they only
moved slightly. Furthermore, two other AR markers are used to
collect data from skilled instructors. These markers are placed
on the back of a user’s hands and calculate the root pose of
the hand that is viewed from the camera. In addition to the
markers, data gloves and fingertip force sensors are used to
measure the work status of skilled instructors. The display,
which is placed next to the work area, shows a video of
a skilled instructor’s work. With the superimposition of the
work status on the image, the learner watches the video and
performs their work through trial and error. The control server
is connected to another computer that monitors the system
program, and acquires sensor information, and performs other
related operations.

B. Work Status Measurement of Hands

The left side of Fig. 2 shows the data glove (CyberGlove
Systems CyberGlove) that is employed to capture the finger
joint angles during the task performance. It has 18 sensors
with a resolution of less than 1 degree and captures finger
joint angles with respect to the wrist. The glove does not
cover the fingertips, enabling the instructor to demonstrate the
task without losing sensation in them. This is important in
the context of the manipulation of deformable objects. The
forces applied to the fingertips need to also be measured;
we used the sensor proposed in [6]. This sensor can measure

the deformation of the cross section of a fingertip when the
finger pad is pressed against something; the small arms are
set along the side of the fingertip, and when deformation
occurs, the displacement is transmitted to a tactile sensor on
the nail side. A Shokac Chip, manufactured by Touchence
Inc.1 has been used as a tactile sensor. Small arms and other
parts were created using a digital light processing 3D printer.
The instructor wore these sensors to capture the hand status.
In summary, an instructor can simultaneously record three
perspective images, hand poses, the joint angles of each finger,
and the forces exerted on the fingertips using this system.

C. System Configuration

Fig. 3 shows an overview of the instruction system. The
system consists of two modes with different functions: the left
side of the figure shows the record mode that captures the
demonstration by a skilled instructor, and the right side shows
the playback mode that produces an interactive instruction
video constructed from the recorded data. The black rectangles
in Fig. 3, indicate the functional modules. Details of the
implementation are described in the following subsections.

1) Record Mode: In the record mode, a skilled instructor’s
task demonstration is captured using the aforementioned sen-
sors. In the hand pose estimator, the poses of the backs of
both hands are estimated from each image that is captured
with cameras using the AR markers fixed on the data gloves.
Here, the top-view camera frame is defined as the reference
coordinate system, and the AR marker frame fixed on the
working desk is used to derive the pose of other side-view
cameras with respect to the reference coordinate system by
using the following transform equations:

Pm = Hm
s Ps, (1)

Hm
s = Hm

r Hs
r
−1, (2)

Rm
s = Rm

r Rs
r
−1. (3)

1Touchence Inc. : http://touchence.jp/en/



TABLE I: Visualization of hand postures and applied forces
exerted on the fingertips on the wrapping the Furoshiki cloth.
In the playback mode, the user interfaces shown in (1) can
turn off according to user preference, as shown in (2)-(8).

(1) (2)

(3) (4)

(5) (6)

(7) (8)

where Pi is a homogeneous representation of a vector pi,
which denotes a position with respect to coordinate system
i, implying that Pi = (pi, 1)T ; H0

1 represents a homogenous
transform matrix that transforms a vector from frame 1 to
frame 0; R0

1 represents the orientation of frame 1 with respect
to 0; and m, s, and r denote the reference, side camera, and
reference AR marker coordinates, respectively. If a side camera
recognizes the hand position ps

hand and the orientation Rs
hand,

the position and the orientation of the hand with respect to the
main camera can be derived as follows:

Pm
hand = Hm

s Ps
hand, (4)

Rm
hand = Rm

s Rs
hand. (5)

The postures derived from the hand pose estimator are stored
in data-storage module described below. Even if an occlusion
problem occurs in a top-view camera image, the values derived
from other perspective images are used in the same manner.

The data storage module stores the dataset obtained in the
record mode. This dataset includes data on the finger joint
angles, forces applied to the fingertips, poses of both hands,
and three perspective videos created from the images captured
by each camera. This module also sends data according to the
learner’s demands in the playback mode.

(1)

(2)

(6)

(5)

(3)

(4)

Left-View Top-View Right-View

User Interface

Zoomed in image of (6)
(6')

Fig. 4: Overview of the user interface. (1) Top view of the
workbench, (2) perspective indicator, (3) current mode, (4)
contact force indicator, (5) seek bar, (6) 3D finger model, (6’)
zoomed-in image of (6). The color of the fingertips is changed
according to the contact forces.

2) Playback Mode: In the playback mode, the system
displays an instruction video to the learner, who conducts
their study according to the instructor’s actions in the video.
The system has functions to switch the video perspective, turn
the user interface on/off as described below, and overlay the
information. The Unity 3D game engine [12] was used to
construct an interactive system with these features.

The replay controller module accepts inputs from the
learner, retrieves instruction videos and other information to
overlay the video from the data storage module, and sends
them to the scene creator module. Learners can control in-
struction videos during the learning process in different ways,
with the easiest being keyboard inputs. Other interfaces, such
as using leg movements or voice, can also be options. We im-
plemented a movie player with the following basic functions:
the play, pause, and change playback positions. The user can
also change the hidden/visible view of the user interface and
the overlaid information.

Fig. 4 shows the user interface. A 3D finger model is used
to illustrate the instructor’s hand posture and the approximate
amount of force acting on the fingertips. The finger models
represent a finger with four joints each, and four fingers,
except the thumb, are used to increase visibility. Using Unity,
the models are superimposed on the hand positions in the
instructional video. The colors bar in Fig. 4 (4) shows the
relationship between the amount of force and the color of the
fingertip. The system internals, except for the user interfaces,
were implemented with a robot operation system (ROS) [13],
allowing the quick implementation of the time synchronization
of multiple sensor data or coordinate transformation using AR
markers.

In the next section, the experiments conducted to explore
the potential usability of the proposed system are discussed.



TABLE II: Steps in the cover-on-a-cushion task

Initial State Step 1 Step 2 Step 3 Step 4

Step 5 Step 6 Step 7 Step 8 Step 9

V. EXPERIMENTS

A. A Visualization Example

First, using a Furoshiki cloth, we attempted to intuitively
understand the steps involved in measurement and visual-
ization using the proposed system. Both hands are used to
simultaneously manipulate the object to be wrapped and the
Furoshiki cloth. In other words, there are multiple instances
in which the fabric and the object are touched. Additionally,
there are many situations where the fingertips are hidden by
the cloth or the back of the hand are hidden from the camera.
The system should be capable of providing clear presentations
to learners, even under these circumstances.

Table I shows snapshots of the instructor manipulating
the Furoshiki cloth. To obtain the measurement results, a
superimposed hand model was also displayed. Fingertip force
sensors were attached to the index and middle fingers of each
hand, and the force applied to each finger was visualized by
changing the color of the tip of each finger model.

The panels in the table show that the shape of the fingers and
force applied to the fingertips in areas that were not directly
visible have been appropriately presented. For example, in (2),
both hands pick a cloth, and force is applied to the index
finger of each hand. In (7), the participant picks and moves
the Furoshiki cloth with his left hand while holding the object
with his right hand; this can be inferred from the exertion
of force on his index fingers. Thus, we can intuitively obtain
information that cannot be understood by simply by watching
videos. However, to deal with problems such as difficulties
in grasping a sense of depth, methods such as viewing images
from different viewpoints need to be actively devised for users.

B. Experiment for Usefulness Assessment

A basic comparison experiment was conducted to confirm
the applicability of the system using the more complex de-
formable object manipulation task described below; Eleven
university students (10 males and one female) were recruited
from our laboratory. They were divided into experimental
(Exp, n = 6) and control (Ctrl, n = 5) groups. The subjects
in the Exp group used the proposed system to learn the
tasks, enabling them to select and switch perspectives and

Fig. 5: Left: cushion, middle: cover, and right: target state

change the overlaid information during learning. In contrast,
the Ctrl group learned a task with a top-view instruction
video generated using the record mode of our system without
overlaid information. Both groups were permitted to freely
pause, resume, or change the playback points on the videos.

In this experiment, all participants attached contact force
sensors to both their left and right index and middle fingertips,
as done in the recording phase by the instructor. Note, that the
data obtained from the sensors were only used to compare
the differences in conditions. No other sensors or AR markers
were attached to the participants’ bodies.

C. Task

We designed a cover-on-a-cushion task as a deformable
object manipulation task for the experiment. As shown in Fig.
5, the cushion resembles a stack of two cuboids of different
sizes. Owing to the specific shape, it needs to be deformed
according to a specific manual procedure to place the cover
on it. The participants tried to do this using instructions for
the experimental condition or control condition stated above.
Table II lists the procedure of the designed task, and the details
are as follows.
Step 1 The cover’s upper part is taken and folded to the inside.
Step 2 The lower portion of the cushion is grasped and inserted into

the cover.
Step 3 The cushion is placed into the space prepared in step 1.
Step 4 The lower part of the cover is fitted to the lower part of the

cushion.
Step 5 The lower part of the cushion is tucked inside the lower part

of the cover.
Step 6 The cushion’s upper-side fillers are pushed to the lower part.
Step 7 The cover’s upper part that has been folded in step 1 should

be withdrawn.



Step 8 The upper portion of the cushion should be fitted with the
upper part of the cover that has been withdrawn in step 7.

Step 9 The shape of the cushion should be adjusted.

The demonstrator completed this task in approximately 150
seconds.

D. Procedure

The following procedure was followed by the participants
in the experiment. First, all four contact force sensors were
calibrated to be comparable to the values among subjects
or groups. Second, the subjects performed 5 min of simple
papercraft work to tune themselves to use their hands with
the force sensors. Third, the participants were instructed on
the task objectives and the instructions for using each system,
following which they performed the task. During the task,
the participants freely controlled the learning system. After
completion, the participants self-reported their results. The task
was repeated thrice.

E. Measures

We designed two quantitative scales to evaluate the perfor-
mance of the participants in the task.

1) Completion Time: The completion times were measured
before each subsequent trial.

2) Understanding Score: The score aims to measure the
degree of understanding at each step of the task mentioned in
subsection C. We determined whether each step was completed
correctly in the following three categories per trial. Subject
A successfully completed the step by following the correct
process; subject B failed to complete the step despite following
the correct process; and subject C either skipped the step or
finished it incorrectly. We defined the understanding score as
the number of steps ranked in category A; the range of this
score was 0-9 (equal to the number of steps) per trial. The
contact force sensor data were excluded from the analysis
because of the frequent detachment of the sensors from the
fingertips during the experiment.

F. Result

The completion time and the understanding score were
analyzed using two-way ANOVA (one factor was groups and
the other was the number of trials). The results are summarized
in Fig. 6 and Table III. Fig. 6 shows that the task completion
time (left) decreased with each trial in both groups. By
contrast, the understanding score (right) varied less over the
trials. The results of the statistical analysis (Table III) showed
no interaction effect between the groups and number of trials
for both features. Regarding the completion time, we observed
that the groups (F(1, 27) = 19.95, p < 0.001 ) and number
of trials (F(2, 27) = 5.25, p = 0.012). produced significant
effects overall. Additionally, we observed that the groups had
a significant effect on the understanding score (F(1, 27) = 9.52,
p = 0.005).

Fig. 6: Difference in average values between groups and num-
ber of trials. Left: completion time, and right:understanding
score

TABLE III: Results of two-way ANOVA

Features Factor df F p

Completion
time[sec]

Groups 1 19.95 < 0.001*
Number of trials 2 5.25 0.012*

Groups * No. of trials 2 0.875 0.428

Understanding
score

Groups 1 9.52 0.005*
Number of trials 2 0.24 0.976

Groups * No. of trials 2 0.024 0.976
* significant at p < 0.05

VI. CONCLUSIONS

We present a novel training system for the manipulation
of deformable objects. The system provides instructions by
visualizing a skilled instructor’s hand posture and the degree
of applied force, without directly recognizing the deformation
of soft object shapes. The experiment results revealed that the
overlaying of skilled instructors’ hand postures and contact
forces on the instruction videos was effective in encouraging
the understanding of learning in deformable object manipu-
lation. However, it was also found that the task completion
time increased with problems in the system. This suggested
that issues existed in the intuitive presentation of information.
Therefore, improving the intuitiveness and useability of the
system is an important issue to be addressed in future studies.

ACKNOWLEDGEMENT

This work was partially supported by NEDO and JST
[Moonshot R&D][Grant Number JPMJMS2034].

REFERENCES

[1] S. Proia, R. Carli, G. Cavone, and M. Dotoli, “Control techniques for
safe, ergonomic, and efficient Human-Robot collaboration in the digital
industry: A survey,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 3, pp.
1798–1819, July 2022.

[2] Y. Domae, “Recent trends in the research of industrial robots and future
outlook,” Journal of Robotics and Mechatronics, vol. 31, no. 1, pp. 57–
62, 2019.

[3] V. Vyatkin, “Software engineering in industrial automation: State-of-the-
Art review,” IEEE Trans. Ind. Inf., vol. 9, no. 3, pp. 1234–1249, Aug.
2013.

[4] H. He, G. Saunders, and J. T. Wen, “Robotic fabric fusing using a novel
electroadhesion gripper,” in 2022 IEEE 18th International Conference
on Automation Science and Engineering (CASE), Aug. 2022, pp. 2407–
2414.



[5] K. Yamazaki and T. Abe, “A versatile End-Effector for Pick-and-Release
of fabric parts,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 1431–1438, Apr. 2021.

[6] Y. Mo, Y. Nakagawa, K. Nagahama, and K. Yamazaki, “Motion mea-
surement and segmentation toward automated sewing operations,” in
2021 IEEE International Conference on Mechatronics and Automation
(ICMA), Aug. 2021, pp. 790–796.

[7] J. Yip, S. H. Wong, K. L. Yick, K. Chan, and K. H. Wong, “Improving
quality of teaching and learning in classes by using augmented reality
video,” Comput. Educ., vol. 128, pp. 88–101, Jan. 2019.
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